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S1 Identifying Cost from Pricing Assumptions

In this appendix I provide conditions for nonparametric identification of the distribution of

willingness to pay and of cost conditional on willingness to pay, assuming that observables

consists of choices, prices, and products’ characteristics.

For this I use a model that is not tailored to my specific application, omitting subsidies

and other regulations. This allows me to focus on, and highlight, the novel aspect of the iden-

tification argument, which is to use equilibrium assumptions and variation in the preferences

of marginal buyers to identify cross-buyer cost heterogeneity. I provide a positive result for

the case of single-plan insurers (or plan-level pricing decisions), an important simplification

that leaves open questions for future work. In fact, multi-product pricing decisions introduce

several complications, with the need of additional conditions, a different constructive proof,

or specific functional form assumptions.

S1.1 Model and observables

I start by adopting the model of demand used in Berry and Haile (2014) (BH), and then

model supply allowing costs to vary with buyers’ willingness to pay.

Demand (adapted from BH). Each consumer i in market r chooses a plan (or product)

from a set J = {0, 1, ..., J}. A market consists of a continuum of consumers in the same

choice environment (e.g. geographic region). Formally a market r for the J products is

a tuple χr = (xr, pr, ξr), collecting characteristics of the products or of the market itself.

Observed exogenous characteristics are represented by xr = (x1r, ..., xJr), where each xjr ∈
RK . The vector ξr = (ξ1r, ..., ξJr), with ξjr ∈ R, represents unobservables at the level of

the product-market. Finally, pr = (p1r, ..., pJr), with each pjr ∈ R, represents (endogenous)

prices.

Consumer preferences are represented with a random utility model quasilinear in prices

(Section 4.2 in BH). Consumer i in market r derives (indirect) utility uijr = vijr − pjr when

purchasing j, with the usual normalization vi0r = 0, for all i, all r. Given prices, the choice

of each buyer is then determined by the vector vir = (vi1r, ..., v
i
Jr). For each buyer in market

r, vir is drawn i.i.d. from a continuous density fr(v). This satisfies the following:

D1. BH Demand structure: There is a partition of xjr into (x
(1)
jr , x

(2)
jr ), where x

(1)
jr ∈ R, such

that given indexes δr = (δ1r, ..., δJr), with δjr = x
(1)
jr + ξjr, fr(v) = f(v|δr, x(2)

r ).

Therefore, assuming that arg maxj∈J u
i
jr is unique with probability one in all markets, choice
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probabilities (market shares) are defined by

sjr = σj(χr) =

∫
Dj(pr)

f(v|δr, x(2)
r ) dv, j = 0, 1, ..., J, (S1)

Dj(pr) = {v : vj − vk ≥ pj − pk, for all k 6= j} . (S2)

Observables. Let zr = (z1r, ..., zJr), zjr ∈ RL, denote a vector of cost shifters excluded

from the demand model. The econometrician observes (pjr, sjr, xjr, zjr) for all r and all

j = 1, 2, ..., J .

Supply. Let wjr = (ξjr, xjr, zjr) ∈ RK+L+1 collect characteristics (observable and unob-

servable) and cost shifters of product j in r. When purchasing j, a buyer i with valua-

tions vi = v in market r increases the total expected cost for the insurer by ψj(v, wjr),

ψj : RJ × RK+L+1 → R.

The function ψj(·, wjr) is continuous and bounded for all j, and describes how the ex-

pected cost of covering the buyer varies with her vector of valuations after conditioning on

wjr.

At the prices pr the seller of j realizes profits in market r equal to

Πjr(χr) = pjr · σj(χr)−
∫
Dj(pr)

ψj(v, wjr) · f(v|δr, x(2)
r ) dv. (S3)

I assume that in each market prices are set in a complete information Nash equilibrium in

pure-strategies. To formalize this, the set of marginal buyers of product j can be described

by

∂Dj(pr) = {v : vj − vk = pjr − pkr for some k 6= j} (S4)

= lim
ε↓0

{
Dj(pr) ∩

(
RJ \ Dj(pjr + ε, p−jr)

)}
. (S5)

Then, following Uryas’ev (1994); Weyl and Veiga (2014), quasilinearity of indirect utility

with respect to price implies that, in equilibrium, in every market r:

S1. Equilibrium: For all j = 1, ..., J , mrjr = mcjr, where

mrjr = σj(χr)− pjr ·
∫
∂Dj(pr)

f(v|δr, x(2)
r ) dv, (S6)

mcjr = −
∫
∂Dj(pr)

ψj(v, wjr) · f(v|δr, x(2)
r ) dv. (S7)
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From S1, marginal revenues are equal to marginal costs, which must be true in a Nash-in-

prices equilibrium. The integrals in mrjr and mcjr are well defined because f(·|δr, x(2)
r ) and

ψj(·, wjr) are both continuous and bounded functions of v.

S1.2 Conditions for identification

Identification is defined as in Roehrig (1988); Matzkin (2008): if the unobservables differ

(almost surely), then the distribution of observables differ (almost surely), where probabilities

and expectations are defined with respect to the distribution of (χr, sr, zr) across markets.

My result is obtained combining conditions for identification of demand provided in BH

— yielding to identification of ξr and then of f(v|δr, x(2)
r ) — with a constructive proof to

identify ψj which I adapted from Somaini (2011, 2015).1 To simplify notation without loss

of generality, as in BH I condition on x
(2)
r — which unlike x

(1)
r can affect the distribution of

preferences quite arbitrarily — and suppress it.

Beside the demand and supply assumptions D1 and S1, I will use the following conditions:

C1. BH Exogeneity of cost shifters : For all j = 1, ..., J , E[ξjr|zr, xr] = E[ξjr] = 0.

C2. BH Completeness : For all functions B(sr, pr) with finite expectations, if

E[B(sr, pr)|zr, xr] = 0 with probability one, then B(sr, pr) = 0 with probability one.

C3. Large support : For every j, supp vr|δr, wjr ⊂ supp pr|δr, wjr ⊂ P , with P bounded.

Condition C1 is a standard exclusion restriction, requiring mean independence between

demand instruments and the structural erros ξjr. Condition C2 is a completeness assumption,

requiring instruments to move market shares and prices sufficiently to distinguish between

different functions of these variables through the exogenous variation in these instruments.

C3 is a large support assumption, requiring cost shifters excluded from ψj to move prices in a

set that covers the support of (conditional) valuations. This is a stronger requirement than

the large support assumption sufficient to identify the distributions f(v|δr), which would

only require supp vr|δr ⊂ supp pr|δr. The stronger condition in C3 allows to prove that cost

functions ψj are also identified. One then has:

Theorem 1 Under D1, S1, C1, C2, C3, ξr, f(v|δr), and ψj are identified.

1This highlights the parallelism between auctions with interdependent costs and selection markets. In
the former case (expected) marginal costs depend on the competitors’ signals, varying with differences of
bids between competitors. In a selection market (expected) marginal costs depend on the preferences of
buyers choosing the plan, varying with differences of prices between competitors.
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Proof of Theorem 1. Condition C3 implies supp vr|δr ⊂ supp pr|δr, and demand is

identified:

Lemma 1 (Berry and Haile, 2014) Under D1, C1, C2, ξr is identified, and f(v|δr) is also

identified if, additionally, supp vr|δr ⊂ supp pr|δr.

Proof. Follows from Theorem 1 and Section 4.2 in BH.�

Similarly to Somaini (2011, 2015), the rest of the proof amounts to approximating for every

j, every wjr, and every v̂ ∈ supp vr|δr, wjr, the integral of cost conditional on Dj(v̂):

Ψj(v̂;wjr, δr) =

∫
Dj(v̂)

ψj(v, wjr) · f(v|δr) dv. (S8)

The mixed-partial J-1 derivative with respect to v̂−j yields then identification of the unknown

cost function ψj, since

dJ−1Ψj(v̂;wjr, δr)

dv̂−j
= ψj(v̂, wjr) · f(v̂|δr) (S9)

and f(v̂|δr) is identified by Lemma 1. This exploits the fact that price enters linearly in

buyers’ indirect utility, hence the set Dj(v̂) is described by a set of inequalities which defines

a cone in RJ with vertex v̂. The boundary of this cone is the set ∂Dj(v̂) defined in (S4); see

also Figure 1 in BH.

To approximate Ψj(v̂;wjr, δr), fix j, wjr, and v̂ ∈ supp vr|δr, wjr. Consider then a

parametric curve η : R+ → R, with η(`) = v̂j + `, and with this define the function

Ψ̂j(`) = Ψj((η(`), v̂−j);wjr, δr). Differentiating Ψ̂j(`) (and using again Uryas’ev, 1994; Weyl

and Veiga, 2014) yields

dΨ̂j(`)

d`
= −

∫
∂Dj((η(`),v̂−j))

ψj(v, wjr) · f(v|δr) dv. (S10)

The function φj(`) ≡ dΨ̂j(`)

d`
is bounded and continuous, and hence Riemann integrable over

[0, T ], where by C3 the upper bound T can be chosen to be such that Ψ̂j(T ) = 0. Therefore,

Ψj(v̂;wjr, δr) = Ψ̂j(0) = −
∫ T

0

φj(`) d`. (S11)

The integral in (S11) can be approximated with arbitrary precision. For this, one can choose

a sequence {`n}Nn=0 for which 0 = `1 < `2, ..., < `N−1 < `N = T , and using C3 build a
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corresponding sequence {χnr }
N
n=0 ∈ supp χr|δr, wjr, such that pnr = (η(`n), v̂−j). Then, as

maxn{`n − `n−1} becomes arbitrarily small

N−1∑
n=0

φj(`
n)(`n+1 − `n) ≈

∫ T

0

φj(`) d`, (S12)

where all the elements in the Riemann sum are identified since by S1 each φj(`
n) can be

replaced by

mrnjr = σj(χ
n
r )− pnjr ·

∫
∂Dj(pnr )

f(v|δnr ) dv, (S13)

which is identified by Lemma 1.�

S2 Estimation Steps

Estimation proceeds in steps. First, I obtain ξ̂jmt as the residual of the OLS regression:

bjmt = λ35

∫
1
[
zAge ≤ 35

]
dGmt(z) + λTier + λYear + λInsurer + ξjmt.

The results are shown in Table S1.

Taking ξ̂jmt as given, I estimate the demand parameters by simulated maximum likelihood

on a subsample of 400,000 individuals. This is due to the very large sample size and the

interest of keeping computation time within reason; the parameter estimates are robust to

considering larger subsamples, at the cost of a (much) longer wait. For every year 2014-

2017, and every age bin An, with n = 1, ..., 7, I draw 3,000 individuals and find the demand

parameters that solve

max
αnt ,β

n
t ,σ

n
t ,µ

n
t ,γ

n
t

∑
i∈Nn

t

ln

(
1

1000

1000∑
s=1

e−αt(zi)pij(i)mt+δj(i)mt(zi,θ
s
i )

1 +
∑J

k=1 e
−αt(zi)pikmt+δkmt(zi,θsi )

)
,

where Nn
t is the set of sampled individuals in age bin An, year t, j(i) is the choice of individual

i, and θsi is the s-th draw from N (0, 1) specific to individual i. The estimates are reported

in Table S2 and Table S3. Standard errors are calculated using the variance-covariance

matrix obtained as the inverse of the negative Hessian of the simulated log-likelihood function

at convergence. The Hessian is calculated using numerical differentiation, the gradient is

analytical.

Separately from demand, I obtain η̂Age running a non-linear least squares regression of
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annual medical spending in the MEPS on age, geographic area, and year: this step finds the

parameters that minimize

1

NMEPS

∑
`∈MEPS

∥∥∥Y` − eηAgeAge`+Year`+Region`

∥∥∥ .
The results are shown in Table S5.

Lastly, with demand and η̂Age as given, I minimize the distance between observed and

model-predicted expected average claims for each jmt combination as a function of demand

estimates and remaining unknown cost parameters:

min
ηWTP ,φ

1

NJ

∑
jmt

∥∥∥∥∥ln

(
ACjmtQ̂jmt

AV S
j

)
− φjmt − ln

(∑
i

1

1000

1000∑
s=1

eη(zi,θ
s
i )q̂jmt(zi, θ

s
i )

)∥∥∥∥∥ ;

where NJ is the number of plans for which I observe average claims as reported in the RRF,

θsi is the s-th draw from N (0, 1) specific to individual i, and Q̂jmt, q̂jmt(zi, θ
s
i ) are calculated

using the demand estimates. Nonlinear minimization is only required with respect to ηWTP:

φ enters the moment linearly, and can therefore be obtained through a simple orthogonal

projection for any value of ηWTP. The estimates are reported in Table S6, standard errors

are bootstrapped, repeating the minimization step using 100 independent draws of demand

parameters.

S3 Risk Adjustment Formula

I apply the ACA risk adjustment formula described in Pope, Bachofer, Pearlman, Kautter,

Hunter, Miller and Keenan (2014). Following Section 4, risk adjustment for each plan j is

calculated as

RAjmt(bfmt,b−fmt) = Qjmt

∑
k Rkmt∑
kQkmt︸ ︷︷ ︸

average premium
in region-year

(
Relative Riskjmt − Relative Adjustmentjmt

)
;
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where

Relative Riskjmt ≡
IDFjAV

S
j Q

−1
jmt

∫
Lmt(z, θ)qjmt(z, θ)dGmt(z, θ)

(
∑

`Q`mt)
−1∑

k IDFkAV
S
k

∫
Lmt(z, θ)qkmt(z, θ)dGmt(z, θ)

, and

Relative Adjustmentjmt ≡
IDFjAV

S
j Q

−1
jmt

∫
Adj(zAge)qjmt(z, θ)dGmt(z, θ)

(
∑

`Q`mt)
−1∑

k IDFkAV
S
k

∫
Adj(zAge)qkmt(z, θ)dGmt(z, θ)

.

The relative risk measure is the ratio of a product-specific average expected cost to

the region-year average, where it is important to notice that Lmt(z, θ) 6= Ljmt(z, θ). In

particular, I set Lmt(z, θ) = Ljmt(z, θ)e
−φ3Insurerjmt : risk adjustment payments depend on

differences in risk selection, and on differences across regions and years, but not on differences

in insurer-specific cost functions. The induced demand factors IDFj vary across metal

tiers, as indicated in Pope et al. (2014): this is equal to 1 for Bronze, 1.03 for Silver,

1.08 for Gold, and 1.15 for Platinum. The relative adjustment measure is calculated in a

similar way, but rather than average expected cost it considers average premium adjustments;

Adj(zAge) = Adjustment(zAge).

The risk adjustment model is applied at the region-year level mt, rather than the entire

state-year. This ensures the computational tractability of equilibrium simulations at the

region-year level, in which each insurer faces a multi-product pricing problem. Linking

risk adjustment payments across regions would require each insurer to consider more than

seventy products at the same time, which would not be feasible. An alternative approach

can be found in Saltzman (2021), who simplifies the model by considering fixed regional

adjustments to premiums. For my analysis, it is important to consider separate pricing

problems across regions, since regional composition and number of competing insurers are

relevant determinants of equilibrium, and of the effect of different subsidy designs.
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S4 Additional Tables and Figures

Table S1: First Stage OLS Regression

bjmt bjmt bjmt bjmt

(1) (2) (3) (4)∫
1
[
zAge ≤ 35

]
dGmt(z) -7896.8 -8176.2 -6830.3 -5207.9

(1500.1) (1075.8) (1031.7) (896.1)
Bronze - - -

Silver 802.0 784.9 752.9
(42.12) (40.25) (36.86)

Gold 1521.5 1504.4 1472.4
(51.25) (47.59) (42.96)

Platinum 2203.2 2186.0 2154.0
(63.45) (58.47) (52.12)

Anthem - -

Blue Shield 114.8 29.14
(64.75) (55.16)

CCHP 184.3 152.8
(76.62) (58.56)

Contra Costa -408.9 -55.47
(160.5) (155.3)

Health Net 22.81 -14.88
(80.96) (74.54)

Kaiser -343.7 -358.5
(49.55) (46.38)

L.A. Care -1074.5 -1108.5
(82.11) (91.31)

Molina -1118.6 -1195.7
(64.72) (74.43)

Oscar -274.6 -629.9
(186.7) (161.7)

Sharp -492.7 -516.3
(84.69) (85.38)

United 227.4 245.5
(119.3) (123.3)

Valley -306.3 -309.0
(56.44) (89.62)

Western -119.3 -95.83
(79.35) (77.05)

2014 -

2015 139.3
(43.43)

2016 335.1
(46.35)

2017 899.4
(54.05)

Constant 6105.8 5032.3 4766.0 3972.4
(448.1) (319.2) (307.1) (269.6)

F-statistic: 27.71 57.76 43.83 33.78

.

Note: The Table shows the OLS estimates from Equation (8), also see Appendix S2. Robust standard error in parentheses.
Each observation is a jmt combination (N=1382). The F-statistic corresponds to the rest of the null hypothesis in which the
share of potential buyers younger than 35 has no effect on bjmt.
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Table S2: Simulated Maximum Likelihood Estimates of Demand Parameters 2014-2015; see Appendix S2

t: 2014 Coverage 2015 Coverage
Ak: 26-31 32-37 38-43 44-49 50-55 56-61 62-64 26-31 32-37 38-43 44-49 50-55 56-61 62-64

α0,k
t 2.309 1.769 1.525 1.536 1.359 1.321 0.917 2.191 1.820 1.512 1.799 1.472 1.036 1.209

(0.266) (0.253) (0.209) (0.218) (0.174) (0.130) (0.102) (0.226) (0.203) (0.173) (0.189) (0.155) (0.123) (0.108)

α1,k
t -0.00151 0.000881 -0.0000874 0.000886 0.000781 -0.000109 0.000142 -0.00265 -0.00133 -0.00111 -0.000939 -0.00000543 0.00102 -0.000408

(0.00107) (0.00101) (0.000776) (0.000909) (0.000716) (0.000490) (0.000388) (0.000788) (0.000709) (0.000606) (0.000700) (0.000607) (0.000504) (0.000397)

βkt -3.414 -3.168 -3.335 -3.132 -2.852 -2.672 -2.773 -3.539 -3.444 -3.518 -3.167 -2.831 -2.647 -2.600
(0.122) (0.111) (0.123) (0.106) (0.0862) (0.0706) (0.0771) (0.125) (0.122) (0.129) (0.0981) (0.0765) (0.0647) (0.0645)

σkt 0.832 0.731 0.701 0.783 0.653 0.574 0.590 0.812 0.760 0.681 0.766 0.658 0.608 0.600
(0.0806) (0.0671) (0.0729) (0.0696) (0.0565) (0.0444) (0.0502) (0.0770) (0.0708) (0.0730) (0.0631) (0.0519) (0.0427) (0.0409)

µ0,k
t -3.850 -10.30 -8.371 -10.79 -16.87 -13.62 -3.961 -0.637 -6.711 -4.242 -14.27 -13.80 -12.17 -12.30

(1.603) (2.214) (2.199) (3.033) (3.136) (3.130) (6.784) (1.361) (1.755) (1.749) (2.730) (2.931) (3.213) (7.126)

µ1,k
t 0.0128 0.0164 0.0120 0.0107 0.00984 0.0102 0.00884 0.00967 0.00871 0.00686 0.00936 0.00974 0.00923 0.00748

(0.00202) (0.00207) (0.00176) (0.00182) (0.00164) (0.00136) (0.00127) (0.00176) (0.00161) (0.00144) (0.00157) (0.00149) (0.00133) (0.00126)

µ2,k
t -0.145 0.0231 -0.00286 0.0409 0.139 0.0630 -0.0861 -0.220 -0.00751 -0.0563 0.134 0.0931 0.0480 0.0493

(0.0559) (0.0619) (0.0527) (0.0639) (0.0589) (0.0528) (0.108) (0.0489) (0.0496) (0.0426) (0.0567) (0.0547) (0.0542) (0.113)

µ3,k
t -0.0840 -0.00760 -0.00841 -0.0979 -0.371 -0.592 0.0165 -0.322 -0.308 -0.340 -0.385 -0.424 -0.643 -0.602

(0.167) (0.168) (0.164) (0.159) (0.155) (0.140) (0.130) (0.165) (0.164) (0.158) (0.159) (0.147) (0.139) (0.138)
Anthem – – – – – – – – – – – – –

Blue Shield 0.414 0.176 0.172 0.183 0.184 0.132 0.156 0.333 0.123 0.0934 0.198 0.0289 0.0386 0.0497
(0.117) (0.123) (0.122) (0.117) (0.106) (0.0921) (0.0924) (0.114) (0.115) (0.112) (0.109) (0.101) (0.0889) (0.0871)

CCHP -0.425 -0.995 0.133 -0.847 0.0372 0.109 -1.259 -0.355 -0.413 -0.787 -0.446 -1.395 -0.624 -0.559
(0.404) (0.449) (0.367) (0.428) (0.359) (0.365) (0.409) (0.382) (0.404) (0.501) (0.411) (0.502) (0.371) (0.375)

Contra Costa -1.257 -20.65 -21.11 -18.97 -0.120 -0.848 -0.847 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(1.036) (17122.6) (17967.4) (7690.9) (0.765) (1.035) (0.617)

Health Net 0.0304 0.224 0.274 0.306 0.190 0.257 0.142 0.267 0.210 0.308 0.179 0.375 0.339 0.198
(0.142) (0.138) (0.136) (0.129) (0.126) (0.111) (0.110) (0.150) (0.150) (0.145) (0.146) (0.130) (0.124) (0.126)

Kaiser 0.644 0.231 0.0829 0.381 0.724 0.933 0.523 0.805 0.475 0.482 0.457 0.525 0.628 0.721
(0.216) (0.226) (0.222) (0.222) (0.213) (0.196) (0.176) (0.176) (0.179) (0.176) (0.178) (0.168) (0.162) (0.159)

L.A. Care -0.706 -1.011 -0.971 -1.119 -1.020 -0.477 -1.245 -1.939 -0.843 -0.825 -1.005 -0.877 -1.158 -1.148
(0.291) (0.305) (0.308) (0.316) (0.315) (0.269) (0.283) (0.495) (0.342) (0.352) (0.348) (0.335) (0.367) (0.357)

Molina -2.368 -2.944 -2.293 -3.352 -2.823 -2.453 -2.674 -1.463 -1.535 -1.294 -1.031 -1.169 -1.660 -2.119
(0.445) (0.512) (0.423) (0.628) (0.508) (0.421) (0.405) (0.329) (0.336) (0.322) (0.282) (0.277) (0.307) (0.342)

Oscar n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Sharp -0.576 -0.977 -0.657 -0.0926 -0.101 0.0273 -0.0885 0.431 0.164 0.650 -0.226 0.569 0.412 0.233
(0.550) (0.623) (0.549) (0.470) (0.466) (0.408) (0.342) (0.379) (0.393) (0.353) (0.459) (0.342) (0.346) (0.356)

United n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Valley -2.039 -20.86 -1.202 -1.181 -0.308 -20.09 -1.611 -1.759 -0.995 -0.502 -19.27 -1.299 -19.78 -2.368
(1.024) (15872.5) (0.745) (0.744) (0.554) (9440.6) (0.734) (1.025) (0.744) (0.622) (6730.6) (0.740) (7145.6) (1.018)

Western -1.899 -20.13 -1.423 -0.0808 -1.936 -1.881 -2.009 -0.731 -20.43 -0.498 -0.280 -1.487 -0.397 -1.206
(1.025) (9288.7) (0.742) (0.505) (1.022) (1.018) (0.728) (0.540) (8841.4) (0.492) (0.461) (0.607) (0.398) (0.479)

γ1,k
t 0.131 0.158 0.160 0.358 0.319 0.418 0.411 0.285 0.453 0.655 0.432 0.513 0.683 0.415

(0.208) (0.230) (0.215) (0.229) (0.214) (0.199) (0.184) (0.173) (0.178) (0.171) (0.190) (0.182) (0.178) (0.177)

γ2,k
t 0.159 -0.153 -0.0677 -0.0348 0.283 0.378 -0.222 -0.251 -0.197 -0.286 -0.255 -0.445 -0.396 -0.424

(0.131) (0.149) (0.134) (0.149) (0.133) (0.115) (0.120) (0.102) (0.0948) (0.110) (0.0995) (0.0930) (0.0968) (0.0895)

γ3,k
t -0.450 -0.549 -0.487 -0.660 -0.676 -0.859 -0.609 -0.201 -0.286 -0.262 -0.395 -0.321 -0.456 -0.259

(0.107) (0.123) (0.111) (0.119) (0.106) (0.0975) (0.101) (0.0623) (0.0552) (0.0692) (0.0570) (0.0526) (0.0557) (0.0495)
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Table S3: Simulated Maximum Likelihood Estimates of Demand Parameters 2016-2017; see Appendix S2

t: 2016 Coverage 2017 Coverage
Ak: 26-31 32-37 38-43 44-49 50-55 56-61 62-64 26-31 32-37 38-43 44-49 50-55 56-61 62-64

α0,k
t 1.725 1.357 1.526 1.560 1.310 1.169 0.895 1.361 1.238 1.029 1.256 1.236 1.106 0.807

(0.176) (0.155) (0.175) (0.148) (0.120) (0.105) (0.0848) (0.181) (0.203) (0.167) (0.146) (0.125) (0.103) (0.0830)

α1,k
t -0.00213 -0.00134 -0.00121 -0.00154 -0.000918 -0.000450 -0.000212 0.000563 0.00138 0.000774 -0.00000953 -0.000400 0.0000457 0.000297

(0.000600) (0.000526) (0.000611) (0.000518) (0.000432) (0.000396) (0.000307) (0.000662) (0.000735) (0.000605) (0.000492) (0.000440) (0.000361) (0.000289)

βkt -3.790 -3.794 -3.402 -3.215 -3.072 -2.774 -2.763 -3.507 -3.228 -3.238 -3.015 -2.938 -2.678 -2.660
(0.151) (0.155) (0.119) (0.0962) (0.0846) (0.0660) (0.0660) (0.141) (0.114) (0.117) (0.0947) (0.0842) (0.0680) (0.0687)

σkt 0.729 0.737 0.690 0.660 0.613 0.599 0.564 0.661 0.640 0.539 0.542 0.559 0.585 0.536
(0.0799) (0.0843) (0.0697) (0.0598) (0.0546) (0.0441) (0.0437) (0.0824) (0.0675) (0.0677) (0.0600) (0.0562) (0.0475) (0.0459)

µ0,k
t -2.804 -3.143 -4.238 -4.564 -9.627 -13.65 -7.353 -7.834 -9.412 -8.413 -11.07 -10.39 -8.778 -12.83

(1.084) (1.378) (1.925) (2.176) (2.381) (2.920) (6.029) (1.320) (1.793) (1.858) (2.310) (2.592) (3.210) (6.578)

µ1,k
t 0.00388 0.00304 0.00738 0.00371 0.00556 0.00358 0.00841 0.0160 0.0195 0.0103 0.00978 0.00689 0.00668 0.00981

(0.00148) (0.00135) (0.00143) (0.00131) (0.00122) (0.00117) (0.00112) (0.00197) (0.00191) (0.00159) (0.00152) (0.00127) (0.00124) (0.00120)

µ2,k
t -0.0758 -0.0627 -0.0675 -0.0383 0.0448 0.0992 -0.0225 0.0132 0.00268 0.0188 0.0637 0.0487 0.00171 0.0554

(0.0369) (0.0393) (0.0465) (0.0462) (0.0447) (0.0492) (0.0952) (0.0429) (0.0497) (0.0442) (0.0482) (0.0486) (0.0539) (0.104)

µ3,k
t -0.645 -0.799 -0.855 -0.748 -0.536 -0.637 -0.594 -1.459 -1.755 -1.714 -1.478 -1.418 -1.401 -1.437

(0.177) (0.178) (0.174) (0.155) (0.149) (0.145) (0.138) (0.181) (0.189) (0.189) (0.170) (0.166) (0.154) (0.146)
Anthem – – – – – – – – – – – – –

Blue Shield 0.296 0.453 0.187 0.229 0.329 0.448 0.277 0.527 0.719 0.520 0.786 0.625 0.755 0.556
(0.109) (0.109) (0.110) (0.101) (0.0967) (0.0933) (0.0866) (0.124) (0.127) (0.130) (0.129) (0.119) (0.116) (0.105)

CCHP 0.194 0.0979 -0.804 -0.879 -0.847 -0.364 -0.600 0.328 -0.320 0.151 0.427 0.364 1.231 0.363
(0.375) (0.403) (0.484) (0.475) (0.429) (0.372) (0.376) (0.494) (0.662) (0.577) (0.473) (0.457) (0.377) (0.413)

Contra Costa n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Health Net -0.557 -0.0724 -0.0197 -0.0861 -0.0352 -0.00429 -0.291 0.401 0.823 0.499 1.329 1.047 1.087 0.873
(0.187) (0.177) (0.173) (0.151) (0.145) (0.140) (0.136) (0.211) (0.216) (0.211) (0.185) (0.175) (0.161) (0.155)

Kaiser 0.985 1.067 0.974 0.711 0.588 0.932 0.759 1.388 1.452 1.542 1.345 0.982 1.420 1.139
(0.188) (0.192) (0.192) (0.173) (0.168) (0.161) (0.151) (0.203) (0.215) (0.214) (0.201) (0.195) (0.181) (0.169)

L.A. Care -0.972 -1.509 -1.483 -0.943 -1.244 -1.217 -1.590 -2.184 -0.904 -0.957 -0.481 -1.625 -1.453 -1.038
(0.347) (0.487) (0.489) (0.322) (0.361) (0.322) (0.358) (0.614) (0.390) (0.437) (0.329) (0.432) (0.360) (0.309)

Molina -0.0980 0.0528 -0.158 -0.431 -0.380 -0.755 -1.192 0.357 0.229 0.476 0.326 0.302 -0.187 -0.461
(0.224) (0.229) (0.235) (0.214) (0.203) (0.210) (0.212) (0.230) (0.249) (0.243) (0.232) (0.220) (0.227) (0.217)

Oscar -21.17 -3.004 -3.692 -21.88 -3.682 -3.835 -2.790 -2.947 -2.715 -21.02 -3.175 -3.262 -2.695 -3.224
(5811.7) (0.715) (1.006) (7835.3) (1.006) (1.006) (0.587) (0.591) (0.519) (5357.2) (0.721) (0.720) (0.520) (0.592)

Sharp 0.570 0.837 0.448 1.069 0.674 1.048 0.567 1.042 1.703 2.092 1.892 1.162 1.518 1.258
(0.342) (0.367) (0.393) (0.305) (0.327) (0.285) (0.300) (0.421) (0.367) (0.346) (0.332) (0.360) (0.303) (0.292)

United -2.140 -21.16 -21.07 -20.96 -20.01 -19.42 -20.35 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
(0.717) (9738.3) (8925.0) (7630.6) (5035.4) (3614.9) (4786.8)

Valley -0.105 -1.520 -1.013 -0.555 -2.211 -0.717 -1.443 -0.874 -1.295 -0.271 -19.64 -19.59 -1.510 -1.491
(0.556) (1.029) (0.747) (0.545) (1.023) (0.546) (0.609) (0.751) (1.043) (0.763) (8026.2) (6492.5) (0.742) (0.741)

Western -1.212 -1.179 -0.632 -1.284 -1.070 -0.824 -0.758 0.0354 0.283 -1.444 0.570 -0.0203 -0.697 -0.536
(0.612) (0.741) (0.549) (0.612) (0.451) (0.420) (0.335) (0.468) (0.480) (1.030) (0.425) (0.399) (0.455) (0.425)

γ1,k
t 0.221 0.718 0.881 0.668 0.760 0.571 0.567 0.110 0.836 0.237 0.0813 0.156 -0.283 -0.218

(0.141) (0.142) (0.156) (0.148) (0.146) (0.153) (0.140) (0.175) (0.208) (0.175) (0.178) (0.182) (0.182) (0.173)

γ2,k
t -0.00593 -0.111 -0.153 -0.182 -0.199 -0.136 -0.178 -0.289 -0.432 -0.184 -0.505 -0.572 -0.119 -0.297

(0.112) (0.0921) (0.0928) (0.0911) (0.0943) (0.0859) (0.0824) (0.165) (0.173) (0.162) (0.180) (0.205) (0.119) (0.158)

γ3,k
t -0.0445 -0.166 -0.176 -0.181 -0.195 -0.205 -0.174 0.0923 -0.178 0.119 0.167 0.183 -0.00212 0.108

(0.0736) (0.0464) (0.0449) (0.0477) (0.0497) (0.0437) (0.0413) (0.119) (0.116) (0.108) (0.107) (0.119) (0.0745) (0.0921)
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Table S4: Impact of Control Function on Demand Estimates

Coefficient on premium ($000/year) WTP for 10% AV increase ($/year)

αt (zi) βt (zi, θi) /αt (zi)

Specification Mean P10 Median P90 Mean P10 Median P90

Baseline,
with Control Function

1.364 1.012 1.322 1.789 431.2 245.1 360.3 726.6
(0.017) (0.024) (0.029) (0.06) (4.8) (7.4) (10.1) (21.7)

No Control Function 1.317 0.974 1.255 1.731 418.1 250.1 335.4 718.9
(0.017) (0.03) (0.02) (0.055) (5) (7.3) (8.7) (17.5)

Note: The table shows the mean, median, and 10-th and 90-th percentiles of the estimated distribution of αt(zi) and
βt(zi,θi)
αt(zi)

.

The top panel shows the baseline results, which include the control function (third-degree polynomial in the residuals ξ̂jmt from

column (4) in Table S1), and the estimates obtained omitting ξ̂jmt. Standard errors in parentheses, obtained as the empirical
standard deviation across 100 independent random draws of the demand parameters using the estimated variance-covariance
matrix.

Table S5: MEPS Annual Expenditure: Non-linear Least Squares

(1) (2) (3)

ηAge 0.0381 0.0379 0.0379
(0.00214) (0.00213) (0.00213)

Constant 6.561 6.738 6.687
(0.114) (0.122) (0.127)

Northeast - -

Midwest -0.0973 -0.106
(0.0624) (0.0624)

South -0.198 -0.202
(0.0569) (0.0567)

West -0.293 -0.298
(0.0656) (0.0656)

2014 -

2015 0.0662
(0.0578)

2016 0.0583
(0.0584)

2017 0.0969
(0.0580)

Note: Non-linear least squares parameter estimates from Equation (10). Standard errors in parentheses.
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Table S6: Other Cost Parameters: Non-linear Least Squares

ηWTP ($100/year for +10% AV) 0.0803
(0.0104)

Constant 5.376
(0.149)

φm: φ3:

Region 1 (see note) - Anthem 0.223
(0.143)

Napa, Sonoma, Solano, Marin 0.187 Blue Shield 0.303
(0.05) (0.133)

Sacramento, Placer, El Dorado, Yolo 0.418 CCHP −0.276
(0.053) (0.132)

San Francisco 0.34 Health Net 0.659
(0.052) (0.13)

Contra Costa 0.343 Kaiser 0.259
(0.052) (0.127)

Alameda 0.183 L.A. Care −0.009
(0.053) (0.136)

Santa Clara 0.131 Molina −0.154
(0.063) (0.124)

San Mateo 0.359 Western 0.226
(0.054) (0.153)

Santa Cruz, Monterey, San Benito 0.235 Other -
(0.235)

San Joaquin, Stanislaus, Merced, Mariposa, Tulare 0.293
(0.046)

Madera, Fresno, Kings 0.172 φt:
(0.055)

San Luis Obispo, Santa Barbara, Ventura −0.002 2014 -
(0.051)

Mono, Inyo, Imperial −0.091 2015 0.288
(0.072) (0.072)

Kern 0.051 2016 0.211
(0.045) (0.082)

Los Angeles 1 (see note) 0.055 2017 0.378
(0.047) (0.08)

Los Angeles 2 (see note) 0.132
(0.049)

San Bernardino, Riverside −0.053
(0.054)

Orange −0.067
(0.047)

San Diego 0.11
(0.052)

Note: Non-linear least squares cost parameters of Equation (5). See Appendix S2 for details.
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Figure S1: Demand Heterogeneity

(a) WTP for 10% AV increase
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(b) Extensive Margin Premium Responses
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Note: Histograms of the estimated distribution of annual willingness-to-pay for a 10% increase in actuarial value,
βt (zi, θi) /αt (zi), and % change in probability of purchasing coverage if all annual premiums increase by $120. The figure
pools across all individuals in 2014-2017 Covered California, divided between under- and over-35.
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