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Abstract
We show that prominent centrality measures in network analysis are all based on 
additively separable and linear treatments of statistics that capture a node’s position 
in the network. This enables us to provide a taxonomy of centrality measures that 
distills them to varying on two dimensions: (i) which information they make use 
of about nodes’ positions, and (ii) how that information is weighted as a function 
of distance from the node in question. The three sorts of information about nodes’ 
positions that are usually used—which we refer to as “nodal statistics”—are the 
paths from a given node to other nodes, the walks from a given node to other nodes, 
and the geodesics between other nodes that include a given node. Using such statis-
tics on nodes’ positions, we also characterize the types of trees such that centrality 
measures all agree, and we also discuss the properties that identify some path-based 
centrality measures.
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1 Introduction

The positions of individuals in a network drive a wide range of behaviors, from deci-
sions concerning education and human capital (Hahn et al. 2015) to the identifica-
tion of banks that are too-connected-to-fail (Gofman 2015). Most importantly, there 
are many different ways to capture a person’s centrality, power, prestige, or influ-
ence. As such concepts depend heavily on context, which measure is most appropri-
ate may vary with the application. Betweenness centrality is instrumental in explain-
ing the rise of the Medici (Padgett and Ansell 1993; Jackson 2008, 2019b), while 
Katz–Bonacich centrality is critical in understanding social multipliers in interac-
tions with complementarities (Ballester et al. 2006), diffusion centrality is important 
in understanding many diffusion processes and people’s information (Banerjee et al. 
2013; Banerjee et al. 2019), eigenvector centrality determines whether a society cor-
rectly aggregates information (Golub and Jackson 2010), and degree centrality helps 
us to understand systematic biases in social norms (Jackson 2019a) and who is first 
hit in a contagion (Christakis and Fowler 2010).1

Despite the importance of network position in many settings, and the diversity 
of measures that have been proposed to capture different facets of centrality, little is 
known about how to systematically distinguish the measures. Occasionally, a par-
ticular measure is defined specifically for the setting being analyzed and justified 
based on that setting (Banerjee et  al. 2013; Jackson and Pernoud 2019), but most 
research uses a measure without justification, or reports several. With this challenge 
in mind, we provide a taxonomy of centrality measures to help researchers better 
understand how centrality measures work and what distinguishes them. In particu-
lar, we show that all prominent centrality measures can be viewed as operating in a 
similar mathematically similar manner, but that they differ in terms of the data that 
they take as inputs, and the way in which they weight different parts of that data.

Specifically, we first identify what we call “nodal statistics.” These summarize 
data about the position of a node in the network. A most basic nodal statistic is the 
neighborhood structure surrounding a given node: how many nodes are at various 
distances from the given node. Another common nodal statistic is how many nodes 
lie on walks of various distances from a given node. Walks allow for cycles and thus 
result in different information about a node’s reach. Which of paths (neighborhoods) 
or walks is appropriate depends on the context. The third most common nodal statis-
tic is a count of how many shortest paths of various lengths between pairs of other 
nodes a given node lies upon.

Second, we show that each prominent centrality measure can be viewed as an 
additively separable weighted average of some nodal statistic. As weights are var-
ied, the relative importance of a node’s position in terms of nearby versus far-off 
relationships is changed. Again, which is most natural depends on the context. 
In fact, one of our results shows that the most prominent centrality measures are 
characterized by axioms of monotonicity, anonymity, and additivity. Monotonicity 

1 For more discussion and references on the distinction between various forms of influence and social 
capital see Jackson (2020).
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captures the idea that higher centrality corresponds to some improvement in terms 
of the nodal statistic, while anonymity captures the idea that nodes’ centralities only 
depend on their statistics and not their labels. Additivity requires that statistics are 
processed in an additively separable manner and so ties things down to a particular 
functional form, but one that has always been implicitly used when defining cen-
trality measures. It has nice mathematical properties, which might explain why it 
underlies essentially all measures. Whether these are appropriate can depend on the 
setting in question, and thus making clear these properties can be helpful.2

From our results, distinguishing centrality measures boils down to which nodal 
statistics they incorporate and how they weight information from different distances. 
These results help us to categorize most standard centrality measures as being of 
seven different types, depending on which of the three nodal statistics they make use 
of and which of four different weighting approaches are used (with some combina-
tions not making sense or being redundant, reducing the twelve to seven).

With this perspective, we provide a discussion of how to interpret which central-
ity measure is most appropriate in which context.

After having characterized the base way in which centrality measures process 
information and depend on nodal statistics, we then provide two results that classify 
specific centrality measures and the nodal statistics that they use. These are degree 
centrality, which only pays attention to immediate connections; and a centrality 
measure that depends on a weighted neighborhood nodal statistic. The latter type 
of centrality measure is tied down by axioms that require that a centrality measure: 
depend only on shortest paths and not on cycles; give higher centrality to nodes that 
are closer to other nodes closer (all else held constant); and give the same marginal 
credit to adding a node at a given distance in different networks. These theorems are 
a first step in a broader research agenda to develop characterizations of the many 
other usual centrality measures and nodal statistics.

The introduction of nodal statistics also helps in identifying social networks for 
which all centrality rankings coincide. Because the ranking induced by different 
centrality measures can be deduced by understanding how their corresponding nodal 
statistics differ (presuming that weightings are decreasing in distance), centrality 
measures coincide if and only if all nodal statistics generate the same order. This 
enables us to identify the trees for which all centrality measures coincide based on 
an examination of nodal statistics.3 In an appendix, we compare network statistics 
on some simulated networks.

We discuss the associated literature later in the paper, as it becomes relevant. The 
short summary is that our main contributions relative to the previous literature are 

2 For instance, there are settings in which some attributes of nodes (e.g., size) may make them more cen-
tral or influential, and so anonymity is inappropriate (e.g., see Jackson and Pernoud (2019)). To keep the 
discussion uncluttered, we focus on the anonymous measures, but the main points that we make extend to 
weighted versions of centrality measures.
3 This is somewhat reminiscent of König et  al. (2014) who show that many centrality rankings coin-
cide in nested-split graphs, which have a strong hierarchical form. Trees admit more variation, and so 
the characterization here provides new insight, especially as it helps us understand when nodal statistics 
coincide.
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(i) to introduce the concept of nodal statistics, (ii) to axiomatize centrality measures 
via a common set of axioms showing how they process nodal statistics via exponen-
tial weighting, (iii) to use this to develop a taxonomy of centrality measures in terms 
of what information about a nodes’ position that they take into account, and on how 
they weight that information, (iv) and to provide some further properties that single 
out some centrality measures and to understand which sorts of trees are such that the 
nodal statistics coincide.

2  Definitions

2.1  Background definitions and notation

We consider a network on n nodes indexed by i ∈ {1, 2,… n}.
A network is a graph, represented by its adjacency matrix g ∈ ℝ

n×n , where gij ≠ 0 
indicates the existence of an edge between nodes i and j and gij = 0 indicates the 
absence of an edge between the two nodes.

Our characterization results apply to both directed and undirected versions of net-
works, and also allow for weighted networks and even signed networks (as the main 
characterization theorems allow for arbitrary signs and values for links). Although 
the results hold without restrictions, some particular centrality measures are based 
on unsigned and unweighted networks, and so for the definitions of centrality meas-
ures below, we refer to adjacency matrices that are nonnegative and unweighted.4

Let G(n) denote the set of admissible networks on n nodes.
The degree of a node i in a undirected network g , denoted di(g) = |{j ∶ gij ≠ 0}| , 

is the number of edges involving node i. (In the case of a directed network, this is 
outdegree and there is a corresponding indegree defined by |{j ∶ gji ≠ 0}|.)

A walk between i and j is a succession of (not necessarily distinct) nodes 
i = i0, i1,… , iM = j such that gimim+1 ≠ 0 for all m = 0,… ,M − 1 . A path in g 
between two nodes i and j is a succession of distinct nodes i = i0, i1,… , iM = j such 
that gimim+1 ≠ 0 for all m = 0,… ,M − 1 . Two nodes i and j are connected (or path-
connected) if there exists a path between them.

In the case of an unweighted network, a geodesic (shortest path) from node i to 
node j is a path such that no other path between them involves a smaller number of 
edges.

The distance between nodes i and j, �g(i, j) is the number of edges involved in 
a geodesic between i and j, which is defined only for pairs of nodes that have a 
path between them and may be taken to be ∞ otherwise. The number of geodesics 
between i and j is denoted �g(i, j) . We let �g(k ∶ i, j) denote the number of geodesics 
between i and j involving node k.

4 Some centrality measures proscribe self-loops and so we can adopt the convention that gii = 0 ; but 
again, the main results do not require such an assumption.
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It is useful to note that in the case of unweighted and unsigned graphs, the ele-
ments of the �-th power of g , denoted g� , have a straightforward interpretation: g�

ij
 

counts the number of (directed) walks of length � from node i to node j.
We let n�

i
(g) denote the number of nodes at distance � from i in network g : 

n�
i
(g) = |{j ∶ �g(i, j) = �}|.
For the case of undirected, unweighted, unsigned networks, a tree is a graph such 

that for any two nodes i, j there is a unique path between i and j. A tree can be ori-
ented by selecting one node i0 (the root) and constructing a binary relation ≻d as 
follows: For all nodes such that gi0i = 1 , set i0 ≻d i . Next, for each pair of nodes i 
and j that are distinct from i0 , say that i ≻d j if gij = 1 and the geodesic from i to i0 is 
shorter than the geodesic from j to i0 . If i ≻d j , then i is called the direct predecessor 
of j and j is called a direct successor of i. The transitive closure of the binary rela-
tion ≻d defines a partial order ≻ , where if i ≻ j then we say that i is a predecessor of j 
and j a successor of i, in the oriented tree.

Let �max(g) denote the largest right-hand-side eigenvalue of a nonnegative g.

2.2  Some prominent centrality measures

A centrality measure is a function c ∶ G(n) → ℝ
n , where ci(g) is the centrality of 

node i in the social network g.5
Here are some of the key centrality measures from the literature. For more 

background see Wasserman and Faust (1994, Chapter 4), Borgatti (2005), Jackson 
(2008, Chapter 2.2), and Jackson (2020).6

Degree centrality
Degree centrality measures the number of edges of node i, di(g) . We can also nor-
malize by the maximal possible degree, n − 1 , to obtain a number between 0 and 
1: cdeg

i
(g) =

di(g)

n−1
. Degree centrality is an obvious centrality measure, and gives 

some insight into the connectivity or ‘popularity’ of node i, but misses potentially 
important aspects of the architecture of the network and a node’s position in the 
network.7

Closeness centrality
Closeness centrality is based on the network distance between a node and each other 
node. It extends degree centrality by looking at neighborhoods of all radii. The input 
into measures of closeness centrality is the list of distances between node i and other 
nodes j in the network, �g(i, j) . There are different variations of closeness centrality 
based on different functional forms. The measure proposed by Bavelas (1950) and 

5 We define centrality measures as cardinal functions, since that is the way they are all defined in the lit-
erature, and are typically used in practice. Of course, any cardinal measure also induces an ordinal rank-
ing, and sometimes cardinal measures are used to identify rankings.
6 Jackson (2008, Chapter 2.2) provides detailed history and references.
7 In the case of directed networks, there are both indegree and outdegree versions, which have different 
interpretations as to how much node i can either receive or broadcast, depending on the direction.
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Sabidussi (1966), is based on distances between node i and all other nodes, ∑
j �g(i, j) . In that measure a higher score indicates a lower centrality.8 To deal with 

this inversion, and also to deal with the fact that this distance becomes infinite if 
nodes belong to two different components, Sabidussi (1966) proposed a centrality 
measure of 1∑

j �g(i,j)
 . One can also normalize that measure so that the highest possible 

centrality measure is equal to 1, to obtain the closeness centrality measure,

An alternative measure of closeness centrality, harmonic centrality (e.g., see Rochat 
(2009), Garg (2009)), aggregates distances differently. It aggregates the sum of all 
inverses of distances, 

∑
j

1

�g(i,j)
 . This avoids having a few nodes for which there is a 

large or infinite distance drive the measurement. This measure can also be normal-
ized so that it spans from 0 and 1, and one obtains

Decay centrality
Decay centrality proposed by Jackson (2008) is a measure of distance that takes 

into account the decay in traveling along shortest paths in the network. It reflects the 
fact that information traveling along paths in the network may be transmitted sto-
chastically, or that other values or effects transmitted along paths in the network may 
decay, according to a parameter � . Decay centrality is defined as

As � goes to 1, decay centrality measures the size of the component in which node i 
lies. As � goes to 0, decay centrality becomes proportional to degree centrality.9

Katz–Bonacich centrality
Katz (1953) and Bonacich (1972, 1987) proposed a measure of prestige or centrality 
based on the number of walks emanating from a node i. Because the length of walks 
in a graph is unbounded, Katz–Bonacich centrality requires a discount factor—a fac-
tor � between 0 and 1—to compute the discounted sum of walks emanating from the 
node. Walks of shorter length are evaluated at an exponentially higher value than walks 
of longer length.10 In particular, the centrality score for node i is based on counting the 

ccls
i
(g) =

n − 1∑
j≠i �g(i, j)

.

ccl
i
(g) =

∑
�

1

�
�{j ∶ �g(i, j) = �}�

n − 1
=

1

n − 1

�

j≠i

1

�g(i, j)
.

c�
i
(g) =

∑

�≤n−1

��n�
i
(g).

9 Decay centrality is also defined for � ∉ [0, 1] , but then the interpretation of it as capturing decay is no 
longer valid.
10 In the limit, as � → 0 , this places weight only on shortest paths, and then becomes closer to decay 
centrality, at least in trees.

8 The more standard approach has to be to use the inverse of the distance as in Sabidussi (1966), so that 
a higher number indicates increased “closeness”, while this contrasts with the earlier definition of Bave-
las (1950).
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total number of walks from it to other nodes, each exponentially discounted based on 
their length:

In matrix terms (when I − �g inverts)11 ,12:cKB(g, �) =
∑∞

�=1
��g�1 = (I − �g)−1�g 1.

Eigenvector centrality
Eigenvector centrality, proposed by Bonacich (1972), is a related measure of pres-
tige. It relies on the idea that the prestige of node i is related to the prestige of her 
neighbors. Eigenvector centrality is computed by assuming that the centrality of 
node i is proportional to the sum of centrality of node i’s neighbors: �ci =

∑
j gijcj , 

where � is a positive proportionality factor. In matrix terms, �c = gc . The vector 
ceig(g) is thus the right-hand-side eigenvector of g associated with the eigenvalue 
�max(g).13

The eigenvector centrality of a node is thus self-referential, but has a well-defined 
fixed point. This notion of centrality is closely related to ways in which scien-
tific journals are ranked based on citations, and also relates to influence in social 
learning.

Diffusion centrality
Diffusion centrality, proposed by Banerjee et  al. (2013),14 is based on a dynamic 
diffusion process starting at node i. In period 1, i passes a piece of information to 
each neighbor with a probability � . In any arbitrary period � , nodes that received 
any information at time � − 1 pass each piece of information that they have received 
onwards with probability � to each of their neighbors. At period L, the expected 
number of times that agents have been contacted is computed using the number of 
walks

cKB
i
(g, �) =

∑

�

��
∑

j

g�
ij
.

11 1 denotes the n-dimensional vector of 1s, and I is the identity matrix. Invertibility holds for small 
enough � (less than the inverse of the magnitude of the largest eigenvalue).
12 In a variation proposed by Bonacich there is a second parameter � that rescales: 
cKB(g, �, �) = (I − �g)−1�g1. Since the scaling is inconsequential, we ignore it.
13 �max(g) is positive when g is nonzero (recalling that it is a nonnegative matrix), the associated vector 
is nonnegative, and for a connected network the associated eigenvector is positive and unique up to a res-
caling (by the Perron-Frobenius Theorem).
14 This is related in spirit to basic epidemiological models (e.g, see Bailey (1975)), as well as the cas-
cade model of Kempe et al. (2003) that allowed for thresholds of adoption (so that an agent cares about 
how many neighbors have adopted). A variation of the cascade model leads to a centrality measure intro-
duced by Lim et al. (2015) called cascade centrality, which is related to the communication centrality of 
Banerjee et al. (2013) and the decay centrality of Jackson (2008). Diffusion centrality differs from these 
other measures in that it is based on walks rather than paths, which makes it easier to relate to Katz–
Bonacich centrality and eigenvector centrality as discussed in Banerjee et al. (2013) and formally shown 
in Banerjee et al. (2019). Nonetheless, diffusion centrality is representative of a class of measures built 
on the premise of how much diffusion one gets from various nodes, with variations in how the process 
is modeled (e.g., see Bramoullé and Genicot (2018)). These are also used as inputs into other measures, 
such as that of Kermani et al. (2015), which combine information from a variety of centrality measures.
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In matrix terms, cdif (g, �, L) =
∑L

�=1
��g�1.

If L = 1 , diffusion centrality is proportional to degree centrality. As L → ∞ , cdif
i

  
converges to Katz–Bonacich centrality whenever � is smaller than the inverse of the 
largest eigenvalue, 1∕�max(g) . Banerjee et  al. (2013); Banerjee et  al. (2019) show 
that a properly normalized version of diffusion centrality converges to eigenvector 
centrality as L grows whenever � is larger than the inverse of the largest eigenvalue, 
1∕�max(g) . In particular, Theorem B.1 in the Supplemental Appendix of Banerjee 
et al. (2019) shows that if g is aperiodic and ��max(g) ≥ 1 then15

Betweenness centrality
Freeman’s (1977) betweenness centrality measures the importance of a node in con-
necting other nodes in the network. It considers all geodesics between two nodes j, k 
different from i which pass through i. Betweenness centrality thus captures the role 
of an agent as an intermediary in the transmission of information or resources 
between other agents in the network. As there may be multiple geodesics connecting 
j and k, we need to keep track of the fraction of geodesic paths passing through i, 
�g(i∶j,k)

�g(j,k)
 . The betweenness centrality measure proposed by Freeman (1977) is

Betweenness centrality weights all geodesics equally, regardless of how far away the 
pair of nodes j, k are away from each other, or how many other ways of reaching 
each other that they have. A version that only counts pairs that are directly con-
nected to the given node i, was proposed by Jackson (2020) under the name of the 
Godfather Index or Godfather centrality. The idea is that i can connect pairs of i’s 
friends that are not directly connected to each other. It takes the simple form:

It has an inverse relationship to clustering, but weighted by the number of pairs of a 
node’s neighbors.

c
dif

i
(g, �, L) =

L∑

�=1

∑

j

��g�
ij
.

(1)ceig(g) = lim
L→∞

cdif (g, �, L)
∑L

�=1
(��max(g))�

.

cbet
i
(g) =

2

(n − 1)(n − 2)

∑

(j,k),j≠i,k≠i

�g(i ∶ j, k)

�g(j, k)
.

GFi(g) =
∑

k>j

gikgij(1 − gkj) = |{k ≠ j ∶ gik = gij = 1, gkj = 0}|.

GFi(g) = (1 − clusti(g))di(g)(di(g) − 1)∕2,

15 Note that they work directly with a weighted directed network. Thus, their �1 = ��max(g).



1 3

Centrality measures in networks  

where clusti(g) is the clustering of node i—the fraction of pairs of i’s neighbors who 
are connected to each other: 

∑
kj∈Ni(g),k<j

gkj

di(g)(di(g)−1)∕2
.

There are other variations that one can consider. For instance, instead of only 
counting immediate neighbors, one can instead weight pairs of other nodes by their 
distance16: 

∑
(j,k)∶j≠i≠k≠j �

�g(j,k)
�g(i∶j,k)

�g(j,k)
, for some � ∈ [0, 1].

For example, in a setting where intermediaries connect buyers and sellers in a 
network, the number of intermediaries on a geodesic matters, as intermediaries 
must share surplus along the path. In that case, it is useful to consider a variation 
on betweenness centrality where the length of the geodesic paths between any two 
nodes j and k is taken into account.

Given the number of centrality measures, we do not define them all, but there are 
many other variations on the above definitions, such as PageRank which is related to 
Katz–Bonacich and Eigenvector centralities.

3  Developing a taxonomy of centrality measures

In this section, we introduce the notion of ‘nodal statistics’ - vectors of data cap-
turing a facet of the position of a node in the network—as well as an aggregator 
that transforms those vectors of data into centrality measures. We then character-
ize how centrality measures can be seen as processing weighted nodal statistics. We 
first introduce nodal statistics, and then discuss the characterization to show that 
most centrality measures can be seen as additively separable weighted sums of nodal 
statistics.

3.1  Nodal statistics

A nodal statistic, si(g) , is a vector of data describing the position of node i in the 
network g . These lie in some Euclidean space, ℝL , where L may be finite or infinite. 
We take the vector of all 0’s (usually an isolated node, or an empty network) to be a 
feasible statistic.

Because networks are complex objects, nodal statistics are useful, as they allow 
an analyst to reduce the complexity of a network into a (small) vector of data. Differ-
ent nodal statistics capture different aspects of a node’s position in a network.

Standard centrality measures use nodal statistics that pay attention only to the 
network and not on the identity of the nodes, as captured in the following property.

For a permutation � of {1,… , n} , let g◦� be defined by (g◦�)ij = g�(i)�(j)
A nodal statistic is anonymous if for any permutation � of {1,… , n} , 

si(g) = s�(i)(g◦�).

16 See Ercsey-Ravasz et al. (2012) for some truncated measures.



 F. Bloch et al.

1 3

3.1.1  Some prominent nodal statistics

Several nodal statistics are fundamental.
The neighborhood statistic, ni(g) = (n1

i
(g),… , n�

i
(g),… , nn−1

i
(g)) , is a path-

based vector counting the number of nodes at distance � = 1, 2,… , n − 1 from a 
given node i.17

The neighborhood statistic measures how quickly (in terms of path length) node i 
can reach the other nodes in the network.

The degree statistic, di(g) = n1
i
(g) , counts the connections of a given node i.

This is a truncated version of the neighborhood statistic.
The walk statistic, wi(g) = (w1

i
(g),… ,w�

i
(g),…) , is an infinite vector counting 

the number of walks of length � = 1, 2,… emanating from a given node i. Using 
the connection between number of walks and iterates of the adjacency matrix, 
w�

i
(g) =

∑
j(g

�)i,j.
The main difference from the neighborhood statistic is that it keeps track of mul-

tiplicities of routes between nodes and not just shortest paths, and thus is useful in 
capturing processes that may involve random transmission.

The intermediary statistic, Ii(g) = (I1
i
(g),… , I�

i
(g),… , In−1

i
(g)) , is a vector 

counting the normalized number of geodesics of length � = 1, 2,… which contain 
node i. For any pair j, k of nodes different from i, the normalized number of geo-
desic paths between i and j containing i is given by the proportion of geodesics pass-
ing through i, �g(i∶j,k)

�g(j,k)
 . Summing across over all pairs of nodes j, k different from i 

who are at distance � from each other: I�
i
=
∑

jk∶�g(j,k)=�,j≠i,k≠i

�g(i∶j,k)

�g(j,k)
.

The intermediary statistic measures how important node i is in connecting other 
agents in the network.

3.1.2  Ordering nodal statistics

It is often useful to compare two vectors of some nodal statistic: for instance how 
does the neighborhood statistic for some node i compare to that of some other node 
i′?

There are various ways to partially order vectors depending on the application, 
but given that the applications all involve vectors in some Euclidean space, the 
default is to use the Euclidean partial order, so that s ≥ s′ if it is at least as large in 
every entry.

Although the ≥ partial order suffices for our main characterization theorems, in 
some cases it is useful to also compare the vectors of nodal statistics using other par-
tial orders that are finer and make orderings in cases in which the Euclidean order-
ing does not. For example, because the total number of nodes in a connected net-
work is fixed, and the neighborhood statistic measures the distribution of nodes at 
different distances in the network, the statistics of two different nodes in a network 

17 This concept is first defined in Nieminen (1973) in discussing a directed centrality notion, and he 
refers to the neighborhood statistic as the subordinate vector.



1 3

Centrality measures in networks  

according to the neighborhood statistic will not be comparable via the Euclidean 
partial ordering unless they are equal.

Thus, a natural partial order to compare vectors associated with a nodal statis-
tic is based on  first order stochastic dominance.18 We say that si ⪰ s�

i
 if for all t, ∑t

�=1
s�
i
≥
∑t

�=1
s��
i

 . This induces a strict version: si ≻ s′
i
 if si ⪰ s�

i
 and s′

i
 si . In 

other words, a statistic si dominates s′
i
 if, for any distance t, the number of nodes at 

distance less than t under si is at least the number of nodes at distance less than t in 
s′
i
.

3.2  A characterization of many centrality measures

We now characterize all of the centrality measures that we have discussed above—
i.e., the canonical measures from the literature.

We first present two elementary axioms that make clear that the centrality of a 
node i depends only on a node’s position and the information contained in some 
nodal statistic si.

Axiom 1 (Anonymity) A centrality measure c is anonymous if for any bijection � on 
{1,… , n} and all i: ci(g) = c�(i)(g◦�).

Anonymity guarantees that a centrality measure does not depend on the identity 
of a node, but instead on its position in the network. The next axiom states that the 
information about position in the network is captured via a nodal statistic, where 
higher statistics correspond to higher centrality.

Axiom 2 (Monotonicity) A centrality measure c is monotonic relative to a nodal 
statistic si if si(g) ≥ si(g

�) implies that ci(g) ≥ ci(g
�).

Monotonicity connects a centrality measure with a nodal statistic: a node i is at 
least as central in social network g than in social network g′ if the nodal statistic of i 
at g is at least as large as the nodal statistic of i at g′.

Under monotonicity and anonymity, the centrality of node i only depends on a 
statistic si , as shown by the following lemma.

Let us say that a function C ∶ ℝ
L
→ ℝ is monotone if C(s) ≥ C(s�) whenever s ≥ s′.

We say that a centrality measure is representable relative to a nodal statistic s of 
dimension L if there exists a function C ∶ ℝ

L
→ ℝ , for which ci(g) = C(si(g)) for all 

i and g.

Lemma 1 A centrality measure c is anonymous and satisfies monotonicity relative 
to some anonymous nodal statistic s if and only if c is representable relative to the 
anonymous s by a monotone C.

18 The entries of the s’s may not sum to one, so this is not always a form of stochastic dominance, but it 
is defined analogously when the s’s have the same sum.
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Note that Lemma 1 implies that the function C is independent of the index of 
node i.

In what follows, we normalize centrality measures so that ci(g) = C(si(g)) = 0 
if si(g) = 0 . This is without loss of generality, as any centrality measure can be so 
normalized simply by subtracting off this value everywhere.

We next provide characterizations of increasingly narrow classes of centrality 
measures by imposing increasingly strong axioms on how they aggregate nodal 
statistics. The standard measures we have defined above all fall into the narrowest 
class.

We remark that once we have shown that the centrality problem is one of pro-
cessing nodal statistics, then it has some parallels to defining a utility function 
over a stream of intertemporal consumptions, as in the classic studies by Koop-
mans (1960) and Debreu (1960) in mathematical economics. Characterizations 
from that literature have loose parallels here, although with some important dif-
ferences in both details and meaning.

Axiom 3 (Independence) A function C ∶ ℝ
L
→ ℝ satisfies independence if

for any si , s′i , s
′′
i
 , and s′′′

i
—all in ℝL—for which there exists some � such that sk��

i
= sk

i
 

and sk���
i

= sk�
i

 for all k ≠ � , and s�
i
= s��

i
= a while s���

i
= s����

i
= b (so, we equally 

change entry � for both statistics without changing any other entries).

Independence requires that, whenever a component of two nodal statistics 
are equal, the difference in centrality across those two nodal statistics does not 
depend on the level of that component. It implies that a centrality measure is an 
additively separable function of the elements of the nodal statistic.

Theorem 1 A centrality measure c is representable relative to an anonymous nodal 
statistic s by a monotone C (Lemma  1) that satisfies independence, if and only if 
there exist a set of monotone functions F� ∶ ℝ → ℝ with F�(0) = 0 , such that

Although Theorem  1 shows that independence (together with monotonicity 
and anonymity) implies that a centrality measure is additively separable, it pro-
vides no information on the specific shape of the functions F� . Additional axioms 
tie down the functional forms.

A recursive axiom, in the spirit of an axiom from Koopmans (1960), implies 
that a centrality measure has an exponential aspect to it.

C
(
si
)
− C

(
s�
i

)
= C

(
s��
i

)
− C

(
s���
i

)
.

(2)ci(g) = C(si(g)) =

L∑

�=1

F�(s�
i
(g)).
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Axiom 4 (Recursivity) A function C ∶ ℝ
L
→ ℝ is recursive if for any � < L and 

si, s
′
i
 (which are L dimensional19)

Recursivity considers the nodal statistic as an ordered vector and compares how 
calculations are done at “earlier stages” (for the first components of the vector) and 
“later stages” (for the last components of the vector). In the classical interpreta-
tion of Koopmans (1960), this corresponds to a real time line, with earlier and later 
consumption levels. Recursivity requires that the calculation being done based on 
later stages of the nodal statistic look ‘similar’ (in a ratio sense) to those done ear-
lier in the nodal statistic. For instance, C

(
si
)
− C

(
s1
i
,… , s�

i
, 0,… , 0

)
 captures what 

is added by the nodal statistic beyond the �-th entry, and the requirement is that 
it operate similarly to how the first L − � entries are treated. The axiom does not 
require equality, but just that the relative calculations are similar, and hence the ratio 
component of the axiom. The axiom makes more sense in the context of particular 
nodal statistics that are tiered in their construction (e.g., neighborhood, walks, etc.) 
and for which applying a similar calculation from different starting points can be 
rationalized.

Again, many standard centrality measures are recursive. Recursivity implies that 
the functions F� have an exponential structure F� = ��−1f , for some increasing f and 
𝛿 > 0:

Theorem 2 A centrality measure c is representable relative to an anonymous nodal 
statistic s by a monotone C ∶ ℝ

L
→ ℝ (Lemma  1) that is recursive and satisfies 

independence, if and only if there exists an increasing function f ∶ ℝ → ℝ with 
f (0) = 0, and � ≥ 0 such that

Recursivity requires each dimension of the nodal statistic to be processed accord-
ing to the same monotone function f, and the only difference in how they enter the 
centrality measure is in how they are weighted—which is according to an exponen-
tial function.

Next, we show that an additivity axiom provides a complete characterization 
that encompasses all the standard centrality measures, and results in our main 
characterization.

Axiom 5 (Additivity) A function C ∶ ℝ
L
→ ℝ is additive if for any si and s′

i
 in ℝL:

C
(
si
)
− C

(
s1
i
,… , s�

i
, 0,… , 0

)

C
(
s�
i

)
− C

(
s�1
i
,… , s��

i
, 0,… , 0

) =
C
(
s�+1
i

,… , sL
i
, 0,… , 0

)

C
(
s��+1
i

,… , s�L
i
, 0,… , 0

) .

(3)ci(g) = C(si(g)) =

L∑

�=1

��−1f (s�
i
(g)).

19 If L = ∞ , then when writing s�+1
i

,… , sL
i
, 0,… , 0 below simply ignore the trailing 0’s.
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Additivity is another axiom that is generally satisfied by centrality measures. It 
clearly implies independence,20 and results in the following characterization.

Theorem 3 A centrality measure c is representable relative to an anonymous nodal 
statistic s by a monotone C ∶ ℝ

L
→ ℝ (Lemma 1) that is recursive and additive, if 

and only if there exists � ≥ 0 and a ≥ 0 such that

Theorem 3 shows that monotonicity, anonymity, recursivity, and additivity, com-
pletely tie down that a centrality measure must be the discounted sum of successive 
elements of some nodal statistic. Conversely, all centrality measures which can be 
expressed as discounted sums of some nodal statistic can be characterized by the 
axioms of monotonicity, anonymity, recursivity and additivity.

It is important to emphasize that additivity and recursivity tie down the manner 
in which nodal statistics are processed to be via an additively separable and linear 
form. We are not judging these axioms as being either appealing or unappealing, 
but instead pointing out that they have been implicitly assumed when people have 
defined each of the standard centrality measures.

3.3  A taxonomy of centrality measures

Theorem 3 shows that when examining prominent centrality measures—which all 
satisfy the axioms of monotonicity, anonymity, recursivity and additivity—we dis-
tinguish them by which nodal statistic they use, and how they weight statistics of 
various distances. Thus, a main implication of our results above, including Theo-
rem 3, is that a taxonomy of centrality measures can be built by which of the basic 
nodal statistics are used and the weighting scheme.

In particular, there are three main nodal statistics that are used: the neighborhood 
(path) statistic, the walk statistic, and the intermediary (geodesic) statistic; and then 
they can be weighted in a variety of ways. This is pictured in Table 1.

The taxonomy from Table  1 helps us understand which centrality measure is 
appropriate under which circumstances.

Generally, centrality is used as some measure of how influential a node might be 
in some process, or how well it is connected (e.g., its social capital. Which measure 
captures this depends on the process in question. The nodal statistic and weighting 
should be matched with that process.

The neighborhood or path statistic is relevant when one the influence of a node 
depends on its “reach”. For instance, in a simple contagion or diffusion process, 

C
(
si + s�

i

)
= C(si) + C(s�

i
).

(4)ci(g) = C(si(g)) = a

L∑

�=1

��−1s�
i
(g).

20 It also implies monotonicity, but since we use monotonicity to establish the aggregator function on 
which additivity is stated, we maintain it as a separate condition in the statement of the theorem.
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paths capture how many other nodes can be reached in how many steps from a given 
node—for instance, as a disease, idea, or meme moves through the network. The 
weighting in that case adjusts for how likely or easily the process transitions from 
one node to the next. If it is only immediate connections that are important, then it 
is the degree statistic and centrality that matter. If the process can move further, then 
decay centrality and its truncated variations are appropriate.

The walk statistic is related to the neighborhood statistic, but instead allows the 
process to travel in cycles. In social learning settings, in which information can be 
repeated and “echo”, and in which repeatedly hearing things matters, then walk 
statistics become more appropriate. The weighting then captures the probability of 
transmission. Walk statistics can also be appropriate in game theoretic settings (e.g., 
see the survey in Jackson and Zenou (2014)), in which people influence each other’s 
behaviors and influence then transmits indirectly. There, the weighting captures the 
amount of influence a person has on their neighbors.

The intermediary statistic has a very different interpretation than the other two. 
It is appropriate when measuring how important an individual is as a connector 
between others. Here, weighting can capture the fact that connecting people directly 
is of more value than connecting people at a distance.

As we mentioned before, eigenvector centrality is actually a limiting case. Recall 
from (1) that if g is aperiodic and � ≥ 1∕�max(g) then21

Thus, eigenvector centrality is the limit of a centrality measure that satisfies the axi-
oms and has a representation of the form in Theorem 3. More formally,

Corollary 1 A centrality measure c is representable as the limit relative to a 
sequence of anonymous nodal statistics sL of a sequence of monotone CL ∶ ℝ

L
→ ℝ 

(Lemma 1) that are recursive and additive, if and only if there exists a sequence of 
�L ≥ 0 and aL ≥ 0 such that

We also remark that closeness centrality is the one centrality measure that uses 
a different weighting scheme. It still uses the neighborhood statistic, but instead of 
weighting nodes at different distances exponentially, doing it hyperbolically. That 
is, instead of weighting the neighborhood statistic by �� , it is weighted by 1∕� . It 
is then covered under Theorem 1 instead of Theorem 3, but can still be viewed as 

ceig(g) = lim
L→∞

cdif (g, �, L)
∑L

�=1
(��max(g))�

.

(5)ci(g) = lim
L

CL(si,L(g)) = lim
L

aL

L∑

�=1

��−1
L

s�
i,L
(g).

21 For smaller � diffusion centrality coincides with Katz–Bonacich centrality, and so exactly at the 
inverse of the largest eigenvalue, Katz–Bonacich and eigenvector centrality converge. This presumes that 
there is a unique first eigenvector, which holds if the adjacency matrix is primitive (e.g., see Jackson 
(2008)). Bonacich (2007) discusses some interesting properties of eigenvector centrality and how it can 
differ on signed and other networks, which violate these conditions.
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part of the first row—together with decay centrality—just with a different weighting 
scheme.22

3.4  Path‑based nodal statistics

Given the extensive use of degree centrality (and variations of closeness and decay), 
we identify some conditions that tie down the neighborhood statistic. Not only does 
this help understand it, but the cycle-independence condition helps us to understand 
how it differs from the walk statistic.

Given a network g , we say that a subnetwork g′ is a minimal i-centered subtree if 
it is a tree and the path distance between i and j in g′ is the same as it is in g for all 
j ≠ i.

Every network g and node i have at least one associated minimal i-centered sub-
tree, which is necessarily also an i-centered subtree of the component of g contain-
ing i.

To understand the idea of i-centering, we note that it preserves the distance struc-
ture of the network. This is not true of just any minimal spanning tree. For instance, 
consider a network connecting n agents that consists of a single giant cycle—essen-
tially a circle. There are n minimal spanning trees for this network, each found by 
eliminating a different link. But depending on which tree one examines, node i could 
become closer or further from some nodes. For instance, if we delete the link from 
i to i + 1 , then even though those two nodes are actually next to each other in the 
original network, i + 1 now appears n − 1 links away from i in the minimal spanning 
tree. If we wish to calculate decay centrality, then we need to pick a spanning tree in 
which i is in the “middle”—so eliminating a link as far as possible from node i. This 
is accomplished by an i-centered tree.

Table 1  A Taxonomy of Centrality Measures

Weighting

Immediate Extended Infinite

low � high �

Nodal Statistic Neighborhood/
Paths

Degree Decay, Close-
ness

Not Applicable

Walks Degree Diffusion Bonacich Eigenvector, Page 
Rank

Intermediary/
Geodesics

Godfather Betweenness Not Applicable

22 Alternatively, we could define a closeness statistic, cli(g) = (cl1
i
(g),… , cl�

i
(g),… , cln−1

i
(g)) , is the vec-

tor such that cl�
i
(g) =

n�
i
(g)

�
 for each � = 1, 2,… , n − 1 , tracking nodes at different distances from a given 

node i, weighted by the inverse of those distances. and add another row. But this would build some of the 
weighting into the nodal statistics, which is cleaner to separate, pedagogically.
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Axiom 6 (Cycle Independence) A centrality measure c is cycle independent if 
ci(g) = ci(g

�) for every network g , every i, and any minimal i-centered subtree �′.

Cycle independence states that centrality can be found by looking just at the tree 
structure of a network and ignoring additional cycles that exist.

We say that a tree g dominates another tree g′ for i if the number of nodes within 
distance � of i is weakly greater under g than g′ for every � . We say that g strictly 
dominates another tree g′ if g dominates g′ and the number of nodes within distance 
� of i is strictly greater under g than g′ for some �.

Axiom 7 (Distance Sensitivity) Centrality measure c is distance sensitive if g and g′ 
are two trees for which g dominates g′ for i, then ci(g) ≥ ci(g

�) , with strict inequality 
if the dominance is strict.

Distance sensitivity implies that the key information from a tree is the distances 
of nodes from the root.

Centrality measures that are based on neighborhood statistics also impose addi-
tional restrictions on the way in which distances enter calculations. To capture this, 
we introduce an axiom on the way that a centrality measure aggregates distances. It 
identifies centrality measures that are separable in the sense that the marginal con-
tribution of a node at a given distance remains constant relative to the rest of the 
network, as captured in the following axiom.

Axiom 8 (Constant Marginal Values) Centrality measure c has constant marginal 
values if g and g′ are two trees for which node j is not involved and j is at the same 
distance from i in both g + kj and g� + k�j for some added links kj to g and k′j to g′ , 
then ci(g + kj) − c(g) = ci(g

� + k�j) − ci(g
�).

We remark that there are many variations on a centrality measure that give the 
same ordering over nodes as a function of the network that differ cardinally. Thus, 
without relying on axioms that are explicitly cardinal in nature, dictating how dis-
tance or some other aspect of position translates into centrality, any characterization 
will be up to some equivalence class, where the actual cardinal values can vary. This 
prompts the next definition that captures statistics that are relative re-weightings of 
the neighborhood statistic.

We say that si(g) is a weighted neighborhood statistic if there exists a vector of 
weights w ∈ ℝ

L
+
 such that si(g)� = w

�
n�
i
(g) . It is �-monotone if w

�
�� is decreasing 

in �.

Theorem 4 A centrality measure c is cycle independent, distance sensitive, has con-
stant marginal values, and is representable relative to an anonymous nodal statistic 
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s by a monotone C ∶ ℝ
L
→ ℝ (Lemma 1) that is recursive and additive23 if and only 

if there exists 𝛿 > 0 and a > 0 such that

and such that si(g) is a weighted neighborhood statistic that is �-monotone.

Theorem 4 shows that a weighted variation of the neighborhood statistic is at the 
origin of any centrality measure satisfying (in addition to the recursivity and additiv-
ity axioms) cycle independence and distance sensitivity. These two additional axi-
oms guarantee that the centrality measure only depends on information contained 
in i-centered tree subtrees and is sensitive to the distances of paths in these trees—
which ties down that the information is equivalent to nodes at various distances, 
up to some monotone weighting of that information. When the weights are all one 
(or all the same), then the resulting centrality measure is decay centrality. As the 
weights vary, then it is a weighted version of decay centrality. The cycle independ-
ence is a key axiom distinguishing decay centrality from other measures in the more 
general family from Theorem 3.

The next result pushes further, so that all the weight is on direct connections.

Axiom 9 (Long Distance Insensitivity) Centrality measure c is long distance insen-
sitive if for any two trees g and g′ for which some i has weakly more links under g 
than g′ , it follows that ci(g) ≥ ci(g

�) , with strict inequality if i has strictly more links.

Theorem 5 A centrality measure c is cycle independent, long distance insensitive, 
has constant marginal values, and is representable relative to an anonymous nodal 
statistic s by a monotone C ∶ ℝ

L
→ ℝ (Lemma 1) that is recursive and additive if 

and only if c is proportional to degree centrality.

Theorems  4 and 5 offer characterizations of two types of centrality measures. 
As with any characterization, one may or may not find the key axioms appealing—
which is why they are helpful in crystalizing what is or is not appealing about a 
measure. For example, cycle independence may make sense in situations in which 
shortest paths are important and redundant paths are not useful, but may be less 
appealing in a setting in which paths fail with nontrivial probabilities and then 
cycles have some importance.

Other properties will characterize different nodal statistics. For example, central-
ity measures based on neighborhood and walk statistics have the property that add-
ing links to a node increase the centrality of the node, while this is not the case for 
centrality measures based on the intermediary statistic. We leave it to future research 

ci(g) = C(si(g)) = a

L∑

�=1

��−1s�
i
(g),

23 Without the restriction that L = n − 1 one can get additional statistics that repeat entries—for instance 
instead of having the neighborhood statistics (n1

i
(g), n2

i
(g), n3

i
(g),… , nn−1

i
(g)) , one can also get other sta-

tistics such as (n1
i
(g), n1

i
(g), n2

i
(g), n2

i
(g), n3

i
(g), n3

i
(g),… , nn−1

i
(g), nn−1

i
(g)) which duplicates entries.
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to further characterize centrality measures based on other nodal statistics, and thus 
provide a fuller bestiary of axioms.

3.5  Some related literature

A main contribution of our work is to show that standard centrality measures can 
be distinguished along two dimensions: which nodal statistics are paid attention to 
when aggregating, and how they are weighted.

This distinguishes our work from the previous literature. Let us discuss some of 
the previous analysis of centrality measures.

This is obviously not the first article or book to note that centrality measures are 
based on processing some sort information about nodes’ positions in a network (e.g., 
see Jackson (2008), Schoch and Brandes (2016)). For instance, Borgatti and Everett 
(2006), Schoch and Brandes (2016) note that most centrality measures involve work-
ing with various aspects of walk counts or path algebras. Indeed, as is seen above, 
most of the nodal statistics described above depend in some way on walks in a net-
work. The three-step decomposition proposed by Schoch and Brandes (2016) (path 
algebra—position—centrality) mirrors our two-step decomposition ( nodal statis-
tic -centrality measure). Schoch and Brandes (2016) show that centrality measures 
respect a monotonicity condition relative to the path algebras, so that if one node 
dominates another according to a measurement of position, then it will be more cen-
tral. We use a related observation as one piece of Lemma 1, in order to define repre-
sentation of a centrality measure.

The contribution here is that we show not only that standard centrality measures 
depend on nodal statistics, but also that they all employ a very specific additively 
separable exponential weighting method; which then enables our taxonomy.

Centrality measures are also related to other ranking problems. For example, 
ranking problems have been considered in the contexts of tournaments (Laslier 
1997), citations across journals (Palacios-Huerta and Volij 2004), and hyperlinks 
between webpages (Page et al. 1998). There is a literature in social choice devoted 
to the axiomatization of ranking methods. For example, the Copeland rule (by which 
agents are ranked according to their count of wins in a tournament),—the equiva-
lent of degree centrality in our setting—has been axiomatized by Rubinstein (1980), 
Henriet (1985), and Brink and d. and R. P. Gilles, (2003). Palacios-Huerta and Volij 
(2004) axiomatize the invariant solution—an eigenvector-based measure on a modi-
fied matrix normalized by the number of citations. Their axiomatization relies on 
global properties—anonymity, invariance with respect to citations intensity. It then 
introduces an axiom characterizing the solution for 2 × 2 matrices (weak homogene-
ity) and a specific definition of reduced games, which together with a consistency 
axiom, allows to extend the solution in 2 × 2 games to general matrices. Slutzki and 
Volij (2006) propose an alternative axiomatization of the invariant solution, replac-
ing weak homogeneity and consistency by a weak additivity axiom. They character-
ize the invariant solution as the only solution satisfying weak additivity, uniformity 
and invariance with respect to citations intensity. Slutzki and Volij (2006) axioma-
tize a different eigenvector centrality measure—the fair bets solution. The fair bets 
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solution is the only solution satisfying uniformity, inverse proportionality to losses 
and neutrality. Boldi and Vigna (2014) axiomatize a variation of closeness centrality 
that they refer to as harmonic centrality.

Dequiedt and Zenou (2017) recently proposed an axiomatization of prestige net-
work centrality measures, departing from the axioms of Palacios-Huerta and Volij 
(2004) in several directions. As in Palacios-Huerta and Volij (2004), their axiom-
atization relies on the characterization of the solution in simple situations (in this 
case stars) and the definition of a reduced problem such that consistency extends the 
solution from the simple situation to the entire class of problems. The reduced game 
is defined using the concept of an “embedded network”: a collection of nodes par-
titioned into two groups—one group where a value is already attached to the node 
(terminal nodes) and one group where values still have to be determined (regular 
nodes). One axiom used is a normalization axiom. Two axioms are used to deter-
mine the solution in the star—the linearity and additivity axioms. Consistency is 
then applied to generate a unique solution—the Katz Bonacich centrality measure 
with an arbitrary parameter a. Replacing linearity and additivity by invariance, 
Dequiedt and Zenou (2017) obtain a different solution in the star network, which 
extends by consistency to degree centrality for general situations. Eigenvector cen-
trality can also be axiomatized using a different set of axioms on the star network, 
and adding a converse consistency axiom.

Garg (2009)24 proposed different sets of axioms to characterize each of degree, 
decay and closeness centralities. To axiomatize degree centrality, he uses an additiv-
ity axiom across subgraphs—a much stronger requirement than that discussed here, 
which makes the measure independent of the structure of neighborhoods at distance 
greater than one. In order to axiomatize decay and degree centrality, Garg uses an 
axiom which amounts to assuming that the only relevant information in the network 
is the neighborhood statistic. The "breadth first search" axiom assumes that central-
ity measures are identical whenever two graphs generate the same reach statistics 
for all nodes. A specific axiom of closeness pins down the functional form of the 
additively separable functions so that the closeness centrality measure is obtained. 
In order to characterize decay centrality, Garg uses another axiom which pins down 
a specific functional form, termed the up-closure axiom.

In independent work (written after but published before this paper) Sadler (2022) 
proposes an axiomatization of “ordinal centrality”, using a single axiom termed 
recursive monotonicity. That axiom requires that the ranking between two nodes 
is equivalent to the ranking between their neighborhoods, where a set S is ranked 
above another set S′ when there exists an injective function f from S′ to S such that 
f(i) is ranked above i for all i ∈ S� . Sadler shows that a few common centrality meas-
ures satisfy that axiom despite its highly restrictive nature, and are ordinal measures, 
including degree centrality, eigenvector centrality and Katz–Bonacich centrality. 
Parallel to what we do in the next Section, Sadler also investigates when all ordinal 
centrality measures agree, and defines “strong centrality” as an incomplete ranking 

24 Garg’s paper was never completed, and so the axiomatizations are not full characterizations and/or are 
without proof. Nonetheless some of the axioms in his paper are of interest.
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of nodes for which all measures of ordinal centrality coincide. He defines a family 
of networks termed “overlapping hierarchies”, which encompass nested split graphs 
and the monotone hierarchies we define in the next Section, and shows that it is the 
family of networks for which degree centrality is a strict ordinal centrality measure, 
which is interpreted as a consistency condition on the ranking of nodes. By contrast, 
we consider axiomatizations of a larger class of centrality measures, and base our 
axiomatization on a two-step process, defining a nodal statistic and a transforma-
tion rule. Given our larger class of centrality measures, the set of networks on which 
they agree is narrower than the overlapping hierarchies, and thus results in a stricter 
definition.

Dasaratha (2020) studies centrality measures in large random networks, and 
shows that they are close to their expected value with high probability. Finally, Jack-
son (2020) provides some discussion of centrality measures as they relate to social 
capital, but using a very different taxonomy, and without providing the characteriza-
tions here.

4  When do centrality measures agree?

In this section, we compare centrality measures both theoretically and via some sim-
ulations. Here, the use of nodal statistics is quite powerful and allows us to precisely 
characterize when it is that different centrality measures coincide.

4.1  Comparing centrality measures on trees

We first focus attention on trees and characterize the class of trees for which all cen-
trality measures based on the neighborhood statistic coincide, and then characterize 
the class of trees for which all centrality measures based on the neighborhood, inter-
mediary and walk statistics coincide.

For networks that are not trees, the characterization of all networks for which cen-
trality measures coincide is an open problem. The presence of cycles means that 
nodal statistics that only track neighborhood structures (e.g., just distances) can dif-
fer dramatically from statistics that track overall path structure (e.g., numbers of 
paths connecting nodes).25

4.1.1  Monotone hierarchies

We define a class of trees that we call monotone hierarchies. An undirected tree g is 
a monotone hierarchy if there exists a node i0 (the root) such that the oriented tree 
starting at i0 satisfies the following conditions:

25 König et al. (2014) prove that degree, closeness, betweenness and eigenvector centrality generate the 
same ranking on nodes for nested-split graphs, which are a very structured hierarchical form of network 
(for which all nodal statistics will provide the same orderings, and so the techniques here would provide 
an alternative proof technique). As noted above, Sadler (2022) investigates situations in which ordinal 
centrality measures coincide.
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• For any two nodes i, j, if the distance between the root and i, �(i) , is smaller than 
the distance between the root and j, �(j) , then di ≥ dj.

• For any two nodes i, j such that �(i) = �(j) , if di > dj , then dk ≥ dl for any succes-
sor k of i and any successor l of j such that �(k) = �(l).

• For any two nodes i, j such that �(i) = �(j) , if di = dj , and dk > dl for some suc-
cessor k of i and any successor l of j such that �(k) = �(l) , then dk ≥ dl for every 
successor k of i and successor l of j such that �(k) = �(l).

• All leaves are at the same distance from the root node.26

In a monotone hierarchy, nodes further from the root have a weakly smaller number 
of successors. In a monotone hierarchy, different subgraphs may have different num-
bers of nodes. However, if at some point, a node i has a larger number of successors 
than a node j at the same level of the hierarchy, in the sub-tree starting from i, all 
nodes must have a (weakly) larger degree than nodes at the same level of the hierar-
chy in the sub-tree starting from j.

Figure 1 displays a monotone hierarchy, with numbers corresponding to the rank-
ing of nodes. A node has a lower number if it has a higher ranking in the hierarchy. 
Two nodes have the same number if neither of them is ranked above the other. A 
node has a higher ranking if it is closer to the root, or, for two nodes at the same level 
of the hierarchy, if it belongs to a subtree with a larger number of nodes. More gen-
erally, we define the following partial order, i ⋗ j , on nodes in a monotone hierarchy.

• If 𝜌(i) < 𝜌(j) , then i ⋗ j.
• For nodes i and j at the same distance from the root, �(i) = �(j) , we define the 

condition inductively starting with nodes at distance one:

– For �(i) = �(j) = 1 , if either di > dj , or if di = dj and there exist two succes-
sors k, l of i and j, respectively, such that �(k) = �(l) and dk > dl , then i ⋗ j.

– Inductively, in distance from the root, consider i and j such that 𝜌(i) = 𝜌(j) > 1:

∗ If there exist two distinct predecessors k,  l of i,  j, respectively, such that 
�(k) = �(l) and k ⋗ l , then i ⋗ j.

∗ If either di > dj , or if di = dj and there exist two successors k, l of i and j, 
respectively, such that �(k) = �(l) and dk > dl , then i ⋗ j.27

Note that, by the definition of a monotone hierarchy, the only way in which two 
nodes are not ranked relative to each other is that they are at the same level and 
every subtree containing one, and a corresponding subtree containing the other that 

26 The other conditions guarantee that all leaves’ distances from the root differ by no more than one from 
each other. However, a line with an even number of nodes shows that there will be no well-defined root 
node that is more central than other nodes, and such examples are ruled out by this condition.
27 Note that this condition cannot be in conflict with the previous one, as it would violate the ordering of 
k and l. This latter condition only adds to the definition when i and j have the same immediate predeces-
sor.
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starts at the same level must be the homomorphic (the same, ignoring node labels). 
In that case we write i ≐ j to represent that neither i ⋗ j nor j ⋗ i).

Hence, the ranking ⋅≥ , ⋗ with associated ≐ , is well defined and gives a complete 
and transitive ranking of the nodes.

As we now show, monotone hierarchies are the only trees for which all centrality 
measures defined by the neighborhood statistic coincide.

Proposition 1 In a monotone hierarchy, for any two nodes i,  j, i ⋗ j if and only if 
ni ≻ nj and i ≐ j if and only if ni = nj . Conversely, if a tree with even diameter and 
all leaves equidistant from the root28 is not a monotone hierarchy, there exist two 
nodes i and j such that neither ni ⪰ nj nor nj ⪰ ni.

4.1.2  Regular monotone hierarchies

For all centrality measures based on other nodal statistics to coincide too, we need 
to consider a more restrictive class of trees, which we refer to as regular monotone 

Fig. 1  A monotone hierarchy

28 Without this condition, there are examples of trees that violate being a monotone hierarchy because 
of the leaf condition, but still have all nodes being comparable in terms of their neighborhood structures.
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hierarchies. A monotone hierarchy is a regular monotone hierarchy if all nodes at 
the same distance from the root have the same degree ( di = dj if �(i) = �(j)).

Cayley trees are regular monotone hierarchies. Stars and lines are regular mono-
tone hierarchies. In a regular monotone hierarchy, all nodes at the same distance 
from the root are symmetric and hence have the same centrality. Centrality is highest 
for the root i0 and decreases with the levels of the hierarchy. Figure 2 illustrates a 
regular monotone hierarchy.

In this case, the ranking ⋗ corresponds completely with distance to the root: i ⋗ j 
if and only if 𝜌(i) < 𝜌(j) and i ≐ j if and only if �(i) = �(j).

Proposition 2 In a regular monotone hierarchy, i ⋗ j if and only if ni ≻ nj, Ii ≻ Ij 
and wi ≻ wj ; and i ≐ j if and only if ni = nj, Ii = Ij and wi = wj . For any tree which is 
not a regular monotone hierarchy, there exist two nodes i and j and two statistics 
s, s� ∈ {n, I,w} such that si ⪰ sj and s′

j
≻ s′

i
.

Proposition 2 shows that, in a regular monotone hierarchy, all centrality measures 
based on neighborhood, intermediary, and walk statistics rank nodes in the same 
order: based on their distance from the root. This is also true for any other statistic 
for which distance from the root orders nodal statistics according to ⪰ (and it is hard 
to think of any natural statistic that would not do this in such a network). Conversely, 
if the social network is a tree which is not a regular monotone hierarchy, then the 
centrality measures will not coincide.29 The intuition underlying Proposition 2 is as 
follows. In a regular monotone hierarchy, agents who are more distant from the root 
have longer distances to travel to other nodes, are less likely to lie on paths between 
other nodes, and have a smaller number of walks emanating from them. Next con-
sider the leaves of the tree. By definition, they do not sit on any path connecting 
other agents and have a intermediary statistic equal to I = (0, 0,… 0) . Hence, if cen-
trality measures are to coincide, all leaves of the tree must have the same neighbor-
hood statistic, a condition which can only be satisfied in a regular monotone hierar-
chy. This last argument shows that centrality rankings based on the intermediary and 
neighborhood statistic can only coincide in regular monotone hierarchies.

4.2  Simulations: differences in centrality measures by network type

Given how extreme the network structures have to be before centrality measures 
agree, we can also explore some, how they disagree as a function of the network 
structure. We do this in the appendix by simulating networks where we can control 
the network characteristics, such as density, homophily, and bridge structures. Given 
all of these dimensions, we end up with many different networks on which to com-
pare centrality measures, and so many of the results appear in the appendix.

29 Proposition 2 shows a reversal of the partial order ⪰ . If the trees are irregular in having closer nodes 
have lower degree and farther nodes having higher degree, then one can get a reversal of ≻ , so that si ≻ sj 
and s′

j
≻ s′

i
.
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5  Concluding remarks: potential for new measures

Our contribution is to provide a foundation for axiomatizing and better understand-
ing the properties of centrality measures. Given our results, a natural next step is to 
further examine which nodal statistics are most appropriate in which applications. 
Also, given that our results show that all standard centrality measures are based on 
the same method of aggregation, and have a parallel to the axioms that character-
ize time-discounted additively separable utility functions, there seems to be room 
for the development of new measures. We close with thoughts on such classes of 
measures.

First, we could allow for more general discounting, with different exponential 
parameters for different path lengths, in the spirit of hyperbolic discounting. We 
could also truncate closeness and decay centrality to have a maximal path length L, 
as in diffusion centrality, beyond which effects disappear.

Another class of measures that may be worth exploring in greater detail are those 
based on power indices from cooperative game theory, with the Shapley value being 
a prime example. Myerson (1977) adapted the Shapley value to allow for communi-
cation structures, Jackson and Wolinsky (1996) adapted the Myerson value to more 
general network settings, and van den Brink and Gilles (2000) adapted it for power 
relationships represented by hierarchies and directed networks. The Myerson value 
defined in Jackson and Wolinsky (1996) provides a whole family of centrality meas-
ures, as once one ties down how value is generated by the network, it then indicates 
how much of that value is allocated—or ‘due’—to each node. Some variations of 

Fig. 2  A regular monotone 
hierarchy
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these measures have popped up in the later literature Gomez et al. (2003), Micha-
lak et al. (2013), Molinero et al. (2013), Ciardiello (2018). These can be difficult to 
compute, and in some cases still satisfy variations on the additivity axiom. It appears 
that whether or not the additivity axiom would be violated depends on the choice of 
the value function.30 The choice of value function would be tied to the application.

Some measures proposed recently in empirical applications (Li and Schürhoff 
2019; Bollen et al. 2009; Ashtiani et al. 2018) use principal component analysis to 
extract and aggregate information contained in different centrality measures. Our 
approach, based on nodal statistics, helps explain the correlation across measures. It 
could be used to generate new aggregate measures based on a combination of nodal 
statistics with appropriate weights.31

A different idea, which is a more direct variation on standard centrality meas-
ures, is to look at the probability of infecting a whole population starting from some 
node under some diffusion/contagion process, rather than the expected number of 
infected nodes, as embodied in the notion of contagion centrality defined by Lim 
et al. (2015). One could also examine whether some given fraction of a population 
is reached, or whether a nontrivial diffusion is initiated from some node. Addition-
ally, a threshold model where a fraction of neighbors (or an absolute number of 
neighbors) must be infected for diffusion to happen is also an interesting thing to 
explore.32 Although such measures build on the same sorts of models as diffusion 
and related centralities, they clearly violate the additivity axiom, and so would move 
outside of the standard classes. The differences that they exhibit compared to stand-
ard measures would be interesting to explore.

Another new class of measures that may be worth exploring involve a multiplica-
tive formulation instead of an additive one. This would reflect strong complementa-
rities among different elements of the nodal statistics, for instance nodes at various 
distances. Given scalars �

�
 and �

�
 that capture the relative importance of the dif-

ferent dimensions of the nodal statistics, for instance the role of nodes at various 
distances from the node in question, we define a new family of centrality measures 
as follows:

These are a form of multiplicative measures that parallel the form of some pro-
duction functions and would capture the idea, for instance, that nodes at various 

(6)ci(g) = C(si(g)) = ×L
�=1

(�
�
+ s�

i
(g))�� .

30 Even though the Shapley value satisfies an additivity axiom, it is an additivity across value functions 
and not across nodal statistics; and so does not translate here.
31 Note, for instance, that a convex combination of nodal statistics generates a different centrality meas-
ure from a convex combination of the measures, for instance. This opens interesting questions for future 
research.
32 In the case of a threshold model, as multiple seeds are needed to initiate any cascade in many net-
works, one could construct a centrality measure by assuming that k other seeds are distributed at random 
on all other nodes, and then examine the marginal value of a particular node.
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distances are complementary inputs into a production process for a given node.33 
This class of measures could produce different rankings of nodes compared to stand-
ard centrality measures, and would capture ideas such as nodes that are well-bal-
anced in terms of how many other nodes are at various distances, for instance.34

Appendix: proofs

Proof of Lemma 1 The if part is clear, and so we show the only if part.
Suppose that si(g) = si(g

�) but ci(g) ≠ ci(g
�) . Without loss of generality let 

ci(g) > ci(g
�) . By monotonicity, since ci(g) > ci(g

�) it must be that si(g�)  si(g) . 
However, this contradicts the fact that si(g) = si(g

�) (which implies that si(g) ∼ si(g
�) 

by reflexivity of a partial order). Thus, ci(g) = ci(g
�) for any g, g′ for which 

si(g) = si(g
�) . Letting S denote the range of si(g) (which is the same for all i by ano-

nymity), it follows that there exists Ci ∶ S → ℝ for which ci(g) = Ci(si(g)) for any g . 
Moreover Ci must be a monotone function on S, given the monotonicity of ci.

Next, we show that Ci = Cj for any i, j. Consider any s� ∈ S and any two nodes i 
and j. Since s� ∈ S , it follows that there exists g for which si(g) = s� . Consider a per-
mutation � such that �(j) = i and �(i) = j . Then by the anonymity of s, s� = sj(g◦�) . 
Thus, by anonymity of c, ci(g) = cj(g◦�) and so Ci(s�) = Cj(s

�) . Given that s′ was 
arbitrary, it follows that Ci = Cj = C for some C ∶ S → ℝ and all i, j.

We extend the function C to be monotone on all of ℝL as follows. Let S1 be the 
set of s ∉ S such that there exists some s� ∈ S for which s′ ≥ s . For any s ∈ S1 
Ci(s) = infs�∈S,s�≥s C(s

�) . Next, let S2 be the set of s ∉ S ∪ S1 . For any s ∈ S2 let 
C(s) = sups�∈S∪S1,s�≤s C(s

�) (and note that this is well defined for all s ∈ S2 since there 
is always some s� ∈ S ∪ S1, s

� ≤ s ). This is also monotone, by construction.   ◻

Proof of Theorems 1-3.
IF part:
It is easily checked that if C can be expressed as in equation (2), then independ-

ence holds. Similarly, if the representation is as in (3), then recursivity also holds, as 
does additivity if (4) is satisfied.

ONLY IF part:
Let e� denote the vector in ℕL with every e�

�
= 1 and e�

j
= 0 for all j ≠ � . Define 

F
�
∶ ℝ → ℝ+ as

33 It would generally make sense to have the �
�
 be a non-increasing function of � . The presence of the 

�
�
 s ensures that there is no excessive penalty for having s�

i
= 0 for some �.

34 Note that even the ordering produced by this class of measures is equivalent to ordering nodes accord-
ing to 

∑L

�=1
�
�
log(�

�
+ s�

i
) . This is an additive form, with nodal statistics �

�
log(�

�
+ s�

i
) . This shows 

that it can be challenging to escape the additive family. Nonetheless, this is a new and potentially inter-
esting family prompted by our analysis.
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Iterated applications of independence imply that

To see this, note that for si = (x, 0,… , 0,… , ) , s�
i
= (0, y, 0,… , 0,… , ) , and 

s��
i
= (x, y, 0,… , 0,… , ) , independence requires

Doing this again for si = (x, y, 0, 0,… , 0,… , ) , s�
i
= (x, 0, z, 0,… , 0,… , ) , and 

s��
i
= (x, y, z, 0,… , 0,… , ) , independence requires

By induction, this holds for arbitrary vectors. Monotonicity implies that F
�
 is 

increasing and F
�(0) = 0 for all �.

By recursivity, for all � ≤ L and all x in ℝ:

Moreover, recursivity also implies that for any two x, x′ in ℝ and any � (provided the 
denominators are not 0):

From (9) this is true only if �(x) ≡ � is constant.
Next, note that (10), together with the fact F

�
(0) = 0 for all � , imply that 

F
�
(x) = ��f (x) for a common f for which f (0) = 0 . This implies that C can be writ-

ten as in equation (3).
Finally, additivity—which clearly implies independence—then implies that f is 

linear (a standard result in vector spaces), and given that it must be that f (0) = 0 , 
the final characterization follows.   ◻

Proof of Theorems 4 and 5. The “if” parts of both theorems are straightforward, 
and so we prove the “only if” claims, beginning with Theorem 4.

From Theorem 3 it follows that

The strictness of sensitivity implies that 𝛿 > 0 and a > 0 . It suffices to show that 
si(g) must be a weighted neighborhood statistic that is �-monotone.

(7)F
�(x) = C

(
xe�

)
.

(8)C
(
si
)
=

L∑

�=1

F
�

(
si,�

)
.

C
(
s��
i

)
− F2(y) = F1(x) − 0,

C
(
s��
i

)
= F1(x) + F2(y).

C
(
s��
i

)
= F1(x) + F2(y) + F3(z).

(9)
F
�+1(x)

F
�(x)

=
F2(x)

F1(x)
= �(x).

(10)
F
�

(
x�
)

F
�(x)

=
F1

(
x�
)

F1(x)
.

ci(g) = C(si(g)) = a

L∑

�=1

��−1s�
i
(g).
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Cycle independence implies that for any g , ci(g) = ci(g
�) where g′ is any minimal 

i-centered subtree of g . Thus, it suffices to prove the characterization for trees.
Let us construct a series of line networks, with i at one extreme and with k links, 

denoted gk . Iteratively, for k = 1 to n − 1 define

It follows directly (noting that n�
i

(
gk
)
= 1 for � ≤ k and 0 otherwise) that

Any i-centered tree g with depth (maximum distance to i) of k, can be built from gk 
by a successive addition of links. Iteratively building g from gk by adding links that 
connect to the tree present at each step, and applying the constant marginal values 
condition at each step, then implies that

Finally, comparing ci(gk) to ci(gk−1 + hj) where h is at distance k − 2 and j is not in 
the network gk−1 , implies that 𝛿�−1w�

i
> 𝛿�w�+1

i
.

The proof of Theorem 5 comes from changing the final step above, which implies 
instead that ��−1w�

i
= 0 for all � > 1 .   ◻

Proof of Proposition 1 [IF] We first prove the ‘if’ part. Consider a monotone hierar-
chy and two nodes i, j.

First, suppose that i ≐ j . From the definition of ≐ it must be that i and j are at the 
same level of the hierarchy, and that any subgraph containing i starting at the same 
level as some subgraph containing j are identical (up to the labeling of the nodes). 
Hence i and j are symmetric, and ni(g) = nj(g).

So, to complete the proof of the ‘if’ part, it is sufficient to show that if i ⋗ j then 
ni ≻ nj.

Consider two nodes at the same distance from the root.
If they are at distance 1, then they have the same distance to each node that is 

not a successor of either node. Given the definition of monotone hierarchy, it must 
be that either di > dj or that di = dj and dk > dl for some successor k of i and any 
successor l of j such that �(k) = �(l) . In either case the definition implies that then 
dk ≥ dl for every successor k of i and successor l of j such that �(k) = �(l) . It directly 
follows that ni ≻ nj.

Inductively, if 𝜌(i) = 𝜌(j) > 1:

• If there exist two distinct predecessors k,  l of i,  j, respectively, such that 
�(k) = �(l) and k ⋗ l , then i ⋗ j , then the ordering holds given the ordering of 

wk
i
≡

∑L

�=1
��−1s�

i

�
gk
�
−
∑L

�=1
��−1s�

i

�
gk−1

�

��
.

ci
(
gk
)
= a

L∑

�=1

��−1w�

i
n�
i

(
gk
)
.

ci(g) = a

L∑

�=1

��−1w�

i
n�
i
(g).
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those predecessors and that their neighborhoods are determined by those pre-
decessors.

• Otherwise, they follow from a common immediate predecessor and differ only 
in the subgraphs starting from them, and the condition follows from the rea-
soning above given the differences in those subgraphs, which must be ordered.

Next, suppose that �(j) = �(i) + 1 . We show that ni(g) ≻ nj(g).
For this part of the proof we provide a formula to compute the number of nodes 

at distance less than or equal to d from node i for a monotone hierarchy, Q(i, d). 
Let �(i) denote the distance from the root and i0, i1, .., ik,… , i�(i) = i the unique path 
between the root and node i. Let p(i,�) denote the number of successors of node i 
at distance � . If d ≥ �(i) , we compute the number of nodes at distance less than or 
equal to d as

To understand this computation, notice that all nodes which are at distance less 
than or equal to d − �(i) from the root are at a distance less than d from node i. 
Other nodes at a distance less than d from node i are computed considering the path 
between i0 and i. Fix i1 . There are successor nodes which are at distance d − �(i) 
from node i1 (and hence at a distance d − 1 from i) and were not counted earlier 
because they are at a distance of d − �(i) + 1 from the root, and successor nodes 
which are at a distance d − �(i) + 1 from node 1 (and hence at a distance d from i) 
and were not counted earlier because they are at a distance d − �(i) + 2 from the 
root. Continuing along the path, for any node ik we count successor nodes at a dis-
tance d − �(i) + k − 1 and d − �(i) + k from node ik which are at a distance d − 1 and 
d from node i and were not counted earlier, and finally obtain the total number of 
nodes at a distance less or equal to d from node i.

Next suppose that d ≤ �(i) . In that case, no node beyond i0 who does not belong 
to the subtree starting at i1 can be at a distance smaller than d. The expression for the 
number of nodes at a distance less than or equal to d simplifies to

The following claim is useful.

Claim 1 In a monotone hierarchy, for any i,  j such that �(j) = �(i) + 1 , and any � , 
p(i,�) ≥ p(j,�).

Proof of the Claim The proof is by induction on � . For � = 1 , the statement is true as 
p(i, 1) ≡ di − 1 ≥ dj − 1 ≡ p(j, 1) . Suppose that the statement is true for all �′ < � . 

Q(i, d) =p(i0, 0) + p(i0, 1) +⋯ + p(i0, d − �(i))

+p(i1, d − �(i)) + p(i1, d − �(i) + 1) + p(i2, d − �(i) + 1) + p(i2, d − �(i) + 2)

+… p(i�(i)−1, d − 2) + p(i�(i)−1, d − 1) + p(i, d − 1) + p(i, d).

Q(i, d) =p(i�(i)−d, 0) + p(i�(i)−d+1, 0) + p(i�(i)−d+1, 1)

+… p(i�(i)−1, d − 2) + p(i�(i)−1, d − 1) + p(i, d − 1) + p(i, d).
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Let i1, .., iI be the direct successors of i and j1, .., jJ the direct successors of j, with 
J ≤ I . Then

where the first inequality is due to the fact that I ≥ J and the second that, by the 
induction hypothesis, as �(ir) = �(jr) − 1 for all r, p(ir,�� − 1) ≥ p(jr,�

� − 1) .   ◻

Consider d ≥ �(i) + 1 and i0, i1, .ir, ., i�(i) , i0, j1,… , jr, j�(i)+1 the paths linking i and 
j to the root. Then

Note that p(i0, d − �(i)) = p(j1, d − �(i) − 1) +
∑

k≠j1,�(k)=1
p(k, d − �(i) − 1) 

and that p(j1, d − �(i)) =
∑

l��(l)=2,�(j1,l)=1 p(l, d − �(i) − 1) . By Claim  1, as 
�(l) = �(k + 1) , p(l, d − �(i) − 1) ≤ p(k, d − �(i) − 1) and as d(j1) ≤ d(i0) − 1 , 
∑

k≠j1,�(k)=1
p(k, d − �(i) − 1) ≥

∑
l��(l)=2,�(j1,l)=1 p(l, d − �(i) − 1) . Furthermore, by 

Claim 1, for all r and all d, p(ir, d) ≥ p(jr+1, d) , so that Q(i, d) − Q(j, d) ≥ 0.
Next, consider d ≤ 𝜌(i) < 𝜌(i) + 1 . Then

and by a direct application of Claim 1, Q(i, d) − Q(j, d) ≥ 0.
We finally observe that there always exists a distance d such that Q(i, d) > Q(j, d) . 

Let h be the total number of levels in the hierarchy. Consider a distance d such that 
h = d + �(i) . Then there exist successor nodes at distance d from i but no succes-
sor nodes at distance d from j. Hence p(i, d) > 0 = p(j, d) . This establishes that 

p(i,�) =

I∑

r=1

p(ir,� − 1),

≥

J∑

r=1

p(ir,� − 1),

≥

J∑

r=1

p(jr,� − 1)

=p(j,�).

Q(i, d) − Q(j, d)

= p(i0, d − �(i)) − p(j1, d − �(i) − 1) − p(j1, d − �(i))

+ [p(i1, d − �(i)) + p(i1, d − �(i) + 1) − p(j2, d − �(i)) − p(j2, d − �(i) + 1)]

+… [p(ir, d − �(i) + r − 1) + p(ir, d − �(i) + r)

− p(jr+1, d − �(i) + r − 1) − p(jr+1, d − �(i)+)]

+… [p(i, d − 1) + p(i, d) − p(j, d − 1) − p(j, d)]

Q(i, d) − Q(j, d) =[p(i�(i)−d, 0) + p(i�(i)−d+1, 0) − p(j�(i)−d+1, 0) − p(j�(i)−d+2, 0)]

+… [p(i�(i)−1, d − 1) + p(i, d − 1) − p(j�(i), d − 1) − p(j, d − 1)]

+ [p(i, d) − p(j, d)]
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Q(i, d) > Q(j, d) and hence ni(g) ≻ nj(g) . By a repeated application of the same 
argument, for any i,  j such that 𝜌(i) < 𝜌(j) , for any i,  j such that 𝜌(i, i0) < 𝜌(j, i0) , 
ni(g) ≻ nj(g).

[ONLY IF]: Suppose that the tree g is not a monotone hierarchy and has an 
even diameter. Consider a line in the tree which has the same length as the diam-
eter of the tree. Pick as a root the unique middle node in the line and let h be the 
maximal distance between the root and a terminal node.

First consider the case in which there exist two nodes i and j such that 
�(j) = �(i) + 1 but dj > di . Then clearly Q(j, 1) > Q(k, 1) . Notice that all 
nodes are at a distance less than or equal to d = h + �(i) from node i whereas 
there exist nodes which are at a distance h + �(i) + 1 from node j, and hence 
Q(j, h + 𝜌(i)) < Q(i, h + 𝜌(i)) so that neither ni ⪰ nj nor nj ⪰ ni.

Next suppose that for all nodes i, j such that �(j) = �(i) + 1 , dj ≤ di , but that there 
exists two nodes i,  j at the same level of the hierarchy such that di > dj and two 
successors of i and j, k and l, at the same level of the hierarchy such that dk < dl . 
Because di > dj , Q(i, 1) > Q(j, 1) . Suppose that ni ≻ nj . Then Q(i, d) > Q(j, d) 
fr all d = 1, 2,… , h + �(i) − 1 . Now consider the two successors k and l of i 
and j. As dk < dl , Q(k, 1) < Q(l, 1) . Now count all the nodes which are at a dis-
tance less than or equal to h + �(k) − 1 from k, Q(k, h + �(k) − 1) . This includes 
all the nodes but the nodes which are at maximal distance from k. As k is a suc-
cessor of i, the set of nodes at maximal distance from k and i are equal so that 
Q(k, h + �(k) − 1) = Q(i, h + �(i) − 1) . Similarly, the set of nodes at maxi-
mal distance from j and l are equal and Q(l, h + �(l) − 1) = Q(j, h + �(j) − 1) . 
Because we assume that ni ≻ nj , Q(i, h + 𝜌(i) − 1) > Q(j, h + 𝜌(j) − 1) so that 
Q(k, h + 𝜌(k) − 1) > Q(j, h + 𝜌(j) − 1) , showing that neither nk ≻ nl nor nl ≻ nk , 
completing the proof of the Proposition.   ◻

Proof of Proposition 2 (IF) [IF] Because a regular monotone hierarchy is a monotone 
hierarchy, we know by Proposition 1 that i ⋗ j if and only if ni ≻ nj.

Let d(�) be the degree of nodes at distance � from the root node.
Next we show that the number of geodesic paths of any length d between two 

nodes is smaller for a node further away from the root. To this end, consider two 
nodes i and j such that j is a direct successor of i. For any d, if a geodesic path 
contains j but not i, then i must be an endpoint of the path. Hence, the total num-
ber of geodesic paths of length d going through j but not through i is 2p(j, d − 1) . 
If di ≥ 3 , pick a direct successor k ≠ j of i, and consider paths of length d con-
necting successors of k to j. All these paths must go through i and there are 
2p(k, d − 1) = 2p(j, d − 1) such paths. If di = 2 , then dj ≤ 2 so that 2p(j, d − 1) = 0 
or 2p(j, d − 1) = 2 . If 2p(j, d − 1) = 2 , then d is small enough so that there exists at 
least two paths of length d connecting a node in the network to j through i. Further-
more, if d = h − �(i, i0) + 1 where h is the number of levels of the hierarchy, there 
is no path of length d connecting i to a node through j whereas there exist paths of 
length d connecting a node to j through i, so that Ii ≥ Ij.

Next, we compute the number of walks emanating from two nodes i and j at 
different levels of the hierarchy. Let wk(d) denote the number of walks of length d 
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emanating from a node at level � . We show that w
�
(d) ≥ w

�+1(d) . We compute the 
number of walks recursively:

We also have w
�
(0) = 1 for all � which allows us to start the recursion.

Next we prove that w
�
(d) ≥ w

�+1(d) for i = 1, .., I − 1 by induction on d The 
statement is trivially true for all � at d = 0 . Now suppose that the statement is true 
at d − 1 . We first show that the inequality holds for all nodes but the root. For � ≥ 1,

The more difficult step is to show that the statement is also true for the root. To this 
end, we prove by induction on d that for all � = 1, .., h − 1:

The statement is true at d = 0 because d(0) ≥ d(�) for all � ≥ 1 . Next compute

By the induction hypothesis,

and

Replacing, we obtain

concluding the inductive argument. Applying this formula for � = 1 , we have 
w0(d) = d(0)w1(d − 1) ≥ [d(1) − 1]w2(d − 1) + w0(d − 1) = w1(d) , completing the 
proof that w

�
(d) ≥ w

�+1(d) for all d.
[ONLY IF] Consider a leaf i of the tree. Then wi = (0, 0… , 0) . So all leaves have 

the same centrality based on the intermediary statistic. They must also have the 
same centrality based on the neighborhood statistic, which implies that the tree is a 
regular monotone hierarchy.   ◻

w�(d) = [d(�) − 1]w�+1(d − 1) + w�−1(d − 1) for � ≥ 1
w0(d) = d(0)w1(d − 1)

w�(d) = [d(�) − 1]w�+1(d − 1) + w�−1(d − 1)
≥ [d(� + 1) − 1]w�+2(d − 1) + w�(d − 1)
=w�+1(d)

d(0)w
�
(d) ≥ [d(�) − 1]w

�+1(d) + w
�−1(d),

d(0)w�(d) = d(0)[[d(�) − 1]w�+1(d − 1) + w�−1(d − 1)],
(d(� − 1) − 1)w�+1(d) + w�−1(d) = [d(�) − 1][[d(� + 2) − 1]w�+2(d − 1) + w�(d − 1)]

+ [d(� − 1) − 1]w�(d − 1) + w�−2(d − 1).

d(0)w
�−1(d − 1) ≥ [d(� − 1) − 1]w

�
(d − 1) + w

�−2(d − 1),

d(0)w
�+1(d − 1) ≥ [d(� + 1) − 1]w

�+2(d − 1)

+ w
�
(d − 1) ≥ [d(� + 2) − 1]w

�+2(d − 1) + w
�
(d − 1).

d(0)w
�
(d) ≥ [d(�) − 1]w

�+1(d) + w
�−1(d),
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Appendix: simulations—differences in centrality measures 
by network type

We simulate networks on 40 nodes. We vary the type of network to have three 
different basic structures, corresponding to a standard random network, a simple 
version of a stochastic block model, and a variation of a stochastic block model 
that includes bridge nodes. The first is an Erdos-Renyi random graph in which all 
links are formed independently. The second is a network that has some homophily: 
there are two types of nodes and we connect nodes of the same type with a differ-
ent probability than nodes of different types. The third is a variant of a homophil-
ous network in which some nodes are ‘bridge nodes’ that connect to other nodes 
with a uniform probability, thus putting them as connector nodes between the two 
homophilitic groups. We vary the overall average degrees of the networks to be 
either 2, 5 or 10. In the cases of the homophily and homophily bridge nodes, there 
are also relative within and across group link probabilities that vary. Given all of 
these dimensions, we end up with many different networks on which to compare 
centrality measures.

We then compare 5 different centrality measures on these networks: degree, 
decay, closeness, diffusion, and Katz–Bonacich. Decay, diffusion and Katz–Bonac-
ich all depend on a parameter that we call the exponential parameter, and we vary 
that as well.35

The details on the three network types we perform the simulation on are:

• ER random graphs: Each possible link is formed independently with probabil-
ity p = d∕(n − 1).

• Homophily:
  There are two equally-sized groups of 20 nodes. Links between pairs of nodes 

in the same group are formed with probability psame and between pairs of nodes 
in different groups are formed with probability pdiff  , all independently.

  Letting psame = H × pdiff  , average degree is: 

• Homophily with Bridge Nodes:
  There are L bridge nodes and two equal-sized groups of nN−L

2
 non-bridge 

nodes. Each bridge node connects to any other node with probability pb . Non-
bridge nodes connect to other same group nodes with probability psame and dif-
ferent group nodes with probability pdiff .

  Letting psame = H × pdiff  , we set pb = d∕(n − 1) where d is defined as the aver-
age degree 

d =
(
n

2
− 1

)
psame +

n

2
pdiff

d =
(
n − L

2
− 1

)
psame +

(
n − L

2

)
pdiff + Lpb.

35 In addition, diffusion centrality has T = 5 in all of the simulations.
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A first thing to note about the simulations (see the tables below) is that the cor-
relation in rankings of the various centrality measures is very high across all of the 
simulations and measures, often above 0.9, and usually in the 0.8 to 1 range. This is 
in part reflective of what we have seen from our characterizations: all of these meas-
ures operate in a similar manner and are based on nodal statistics that often move 
in similar ways: nodes with higher degree tend to be closer to other nodes and have 
more walks to other nodes, and so forth. In terms of differences between measures, 
closeness and betweenness are more distinguished from the others in terms of cor-
relation, while the other measures all correlate above 0.98 in Table 2.

Table 2  Avg degree 2, Erdos Renyi, Decay.15

Cent1 Cent2 Correlation of 
Rank Vector

Fraction of Sims w 
same Top Node

Fraction Nodes 
Switch Rank

Max 
Change in 
% Rank

Degree Decay 0.99 1.00 0.73 0.16
Degree Closeness 0.83 0.78 0.77 0.34
Degree Diffusion 0.98 0.98 0.74 0.17
Degree KatzBon 1.00 1.00 0.73 0.16
Degree Between 0.83 0.50 0.93 0.30
Decay Degree 0.99 1.00 0.73 0.16
Decay Closeness 0.88 0.74 0.61 0.23
Decay Diffusion 1.00 0.86 0.30 0.08
Decay KatzBon 0.99 0.86 0.29 0.08
Decay Between 0.84 0.42 0.90 0.32
Closeness Degree 0.83 0.78 0.77 0.34
Closeness Decay 0.88 0.74 0.61 0.23
Closeness Diffusion 0.86 0.66 0.65 0.24
Closeness KatzBon 0.83 0.66 0.65 0.25
Closeness Between 0.67 0.52 0.91 0.35
Diffusion Degree 0.98 0.98 0.74 0.17
Diffusion Decay 1.00 0.86 0.30 0.08
Diffusion Closeness 0.86 0.66 0.65 0.24
Diffusion KatzBon 0.99 0.98 0.11 0.04
Diffusion Between 0.83 0.34 0.91 0.36
KatzBon Degree 1.00 1.00 0.73 0.16
KatzBon Decay 0.99 0.86 0.29 0.08
KatzBon Closeness 0.83 0.66 0.65 0.25
KatzBon Diffusion 0.99 0.98 0.11 0.04
KatzBon Between 0.83 0.34 0.91 0.35
Between Degree 0.83 0.50 0.93 0.30
Between Decay 0.84 0.42 0.90 0.32
Between Closeness 0.67 0.52 0.91 0.35
Between Diffusion 0.83 0.34 0.91 0.36
Between KatzBon 0.83 0.34 0.91 0.35
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These extreme correlations are higher than those found in Valente et al. (2008), 
who also find high correlations, but lower in magnitude, when looking at a series 
of real data sets.36 The artificial nature of the Erdos-Renyi networks serves as a 
benchmark from which we can jump off as it results in less differentiation between 
nodes than one finds in many real-world networks, but also allows us to know that 

Table 3  Avg degree 2, Erdos Renyi, Decay.5

Cent1 Cent2 Correlation of 
Rank Vector

Fraction of Sims w 
same Top Node

Fraction Nodes 
Switch Rank

Max 
Change in 
% Rank

Degree Decay 0.89 0.80 0.78 0.34
Degree Closeness 0.82 0.84 0.78 0.33
Degree Diffusion 0.91 0.96 0.78 0.34
Degree KatzBon 1.00 1.00 0.74 0.17
Degree Between 0.84 0.66 0.92 0.31
Decay Degree 0.89 0.80 0.78 0.34
Decay Closeness 0.97 0.96 0.26 0.07
Decay Diffusion 0.93 0.68 0.57 0.17
Decay KatzBon 0.90 0.66 0.65 0.25
Decay Between 0.78 0.78 0.91 0.39
Closeness Degree 0.82 0.84 0.78 0.33
Closeness Decay 0.97 0.96 0.26 0.07
Closeness Diffusion 0.84 0.70 0.61 0.19
Closeness KatzBon 0.83 0.70 0.66 0.24
Closeness Between 0.67 0.80 0.91 0.38
Diffusion Degree 0.91 0.96 0.78 0.34
Diffusion Decay 0.93 0.68 0.57 0.17
Diffusion Closeness 0.84 0.70 0.61 0.19
Diffusion KatzBon 0.92 0.92 0.58 0.23
Diffusion Between 0.80 0.56 0.93 0.46
KatzBon Degree 1.00 1.00 0.74 0.17
KatzBon Decay 0.90 0.66 0.65 0.25
KatzBon Closeness 0.83 0.70 0.66 0.24
KatzBon Diffusion 0.92 0.92 0.58 0.23
KatzBon Between 0.84 0.54 0.91 0.35
Between Degree 0.84 0.66 0.92 0.31
Between Decay 0.78 0.78 0.91 0.39
Between Closeness 0.67 0.80 0.91 0.38
Between Diffusion 0.80 0.56 0.93 0.46
Between KatzBon 0.84 0.54 0.91 0.35

36 See Schoch et al. (2017) for some discussion of how correlation varies with network structure.
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differences among nodes are coming from random variations. As we add homophily 
in Table 4, and then bridge nodes in Table 5, we see the correlations drop signifi-
cantly, especially comparing betweenness centrality to the others, and this then has 
an intuitive interpretation as bridge nodes naturally have high betweenness central-
ity, but may not stand out according to other measures.

Correlation is a very crude measure, and it does not capture whether nodes are 
switching ranking or by how much. Some nodes could have dramatically differ-
ent rankings and yet the correlation could be relatively high overall. Thus, we also 
look at how many nodes switch rankings between two measures, as well as how 

Table 4  Avg degree 2, Homophily, Decay.5

Cent1 Cent2 Correlation of 
Rank Vector

Fraction of Sims w 
same Top Node

Fraction Nodes 
Switch Rank

Max 
Change in 
% Rank

Degree Decay 0.89 0.80 0.80 0.35
Degree Closeness 0.82 0.84 0.79 0.37
Degree Diffusion 0.90 0.88 0.79 0.34
Degree KatzBon 1.00 1.00 0.75 0.15
Degree Between 0.79 0.54 0.93 0.34
Decay Degree 0.89 0.80 0.80 0.35
Decay Closeness 0.97 0.96 0.33 0.07
Decay Diffusion 0.92 0.64 0.62 0.18
Decay KatzBon 0.90 0.68 0.69 0.26
Decay Between 0.75 0.64 0.91 0.40
Closeness Degree 0.82 0.84 0.79 0.37
Closeness Decay 0.97 0.96 0.33 0.07
Closeness Diffusion 0.83 0.64 0.64 0.19
Closeness KatzBon 0.83 0.70 0.68 0.28
Closeness Between 0.65 0.60 0.92 0.39
Diffusion Degree 0.90 0.88 0.79 0.34
Diffusion Decay 0.92 0.64 0.62 0.18
Diffusion Closeness 0.83 0.64 0.64 0.19
Diffusion KatzBon 0.91 0.80 0.63 0.24
Diffusion Between 0.75 0.38 0.93 0.47
KatzBon Degree 1.00 1.00 0.75 0.15
KatzBon Decay 0.90 0.68 0.69 0.26
KatzBon Closeness 0.83 0.70 0.68 0.28
KatzBon Diffusion 0.91 0.80 0.63 0.24
KatzBon Between 0.80 0.44 0.91 0.36
Between Degree 0.79 0.54 0.93 0.34
Between Decay 0.75 0.64 0.91 0.40
Between Closeness 0.65 0.60 0.92 0.39
Between Diffusion 0.75 0.38 0.93 0.47
Between KatzBon 0.80 0.44 0.91 0.36
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the maximal extent to which some node changes rankings. There, we see more sub-
stantial differences across centrality measures, and with most measures being more 
highly distinguished from each other.

As we increase the exponential factor (e.g., from Table 2 to 3), we see greater dif-
ferences between the measures, as the correlations drop and we see more changes in 
the rankings. With a very low exponential factor, decay, diffusion, Katz–Bonacich 

Table 5  Avg degree 2, Homophily-Bridge, Decay.5

Cent1 Cent2 Correlation of 
Rank Vector

Fraction of Sims w 
same Top Node

Fraction Nodes 
Switch Rank

Max 
Change in 
% Rank

Degree Decay 0.89 0.82 0.80 0.34
Degree Closeness 0.82 0.86 0.79 0.36
Degree Diffusion 0.90 0.88 0.79 0.34
Degree KatzBon 1.00 1.00 0.75 0.15
Degree Between 0.79 0.56 0.93 0.34
Decay Degree 0.89 0.82 0.80 0.34
Decay Closeness 0.97 0.94 0.32 0.07
Decay Diffusion 0.93 0.66 0.61 0.18
Decay KatzBon 0.90 0.70 0.68 0.25
Decay Between 0.75 0.58 0.92 0.40
Closeness Degree 0.82 0.86 0.79 0.36
Closeness Decay 0.97 0.94 0.32 0.07
Closeness Diffusion 0.84 0.66 0.63 0.19
Closeness KatzBon 0.83 0.72 0.67 0.27
Closeness Between 0.65 0.58 0.92 0.39
Diffusion Degree 0.90 0.88 0.79 0.34
Diffusion Decay 0.93 0.66 0.61 0.18
Diffusion Closeness 0.84 0.66 0.63 0.19
Diffusion KatzBon 0.91 0.80 0.62 0.24
Diffusion Between 0.75 0.40 0.93 0.46
KatzBon Degree 1.00 1.00 0.75 0.15
KatzBon Decay 0.90 0.70 0.68 0.25
KatzBon Closeness 0.83 0.72 0.67 0.27
KatzBon Diffusion 0.91 0.80 0.62 0.24
KatzBon Between 0.79 0.46 0.91 0.36
Between Degree 0.79 0.56 0.93 0.34
Between Decay 0.75 0.58 0.92 0.40
Between Closeness 0.65 0.58 0.92 0.39
Between Diffusion 0.75 0.40 0.93 0.46
Between KatzBon 0.79 0.46 0.91 0.36
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are all very close to degree, while for higher exponential parameters they begin to 
differentiate themselves. This makes sense as it allows the measures to incorporate 
information that depends on more of the network, and that is less tied to immediate 
neighborhoods.
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